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A B S T R A C T

Against the backdrop of global warming and rapid urbanization, urban extreme heat is becoming increasingly 
severe, with profound impacts on public health, infrastructure, and social equity. Advances in artificial intelli
gence (AI) offer new opportunities to address this challenge. This systematic review examines 102 publications 
on AI applications in urban extreme heat governance. The findings reveal a “Northern bias,” with most studies in 
the United States, China, and Europe, while gaps exist in sub-Saharan Africa and Latin America. Supervised 
learning dominates current approaches. AI demonstrates effectiveness across four dimensions of governance. In 
prediction and early warning, random forests and XGBoost are suitable for short-term forecasting, CNNs and 
LSTMs excel at spatiotemporal patterns, and hybrid models improve accuracy. In monitoring and assessment, AI 
overcomes spatiotemporal limits of remote sensing, shifting from static heat mapping to dynamic 
heat–population risk identification, with social media capturing residents' perceptions. In mitigation and adap
tation, AI identifies thresholds of green–blue infrastructure, supports urban form regulation, and expands 
climate-adaptive design through generative AI. In scenario simulation and decision support, AI-powered digital 
twins and interactive platforms integrate planning and operations, fostering expert–public collaboration. Yet 
applications remain constrained by trade-offs between accuracy and efficiency, limited data integration, and 
insufficient causal inference, particularly in modeling the heat risk chain as a multi-stage system. Future work 
should build data frameworks integrating physical and social information and advance paradigm shifts toward 
causal inference and multi-objective optimization. A systematic AI framework can enable closed-loop governance 
from risk identification to intelligent response.

1. Introduction

The trend of global warming has become increasingly pronounced. 
Broadly speaking, any high-temperature phenomena that significantly 
impact human health, infrastructure, or ecosystems (including heat 
waves, urban heat islands, heat exposure, and human thermal stress) can 
be considered “extreme heat,” with their frequency, duration, and in
tensity showing significant upward trends over the past decades (Esper 
et al., 2024). The rapid urbanization process has further amplified this 
risk, not only exposing more populations to heat threats but also 
intensifying local thermal environments through urban heat island ef
fects (Q. Cheng et al., 2023a; Yang et al., 2017). This compounding ef
fect not only exacerbates urban residents' heat exposure levels but also 

profoundly impacts public health (Laaidi et al., 2012), energy systems 
(L. Jiang et al., 2024a), economic productivity (Fatima et al., 2023), and 
social equity (Slesinski et al., 2025). The sharp rise in excess mortality 
during heat waves, grid pressure from surging air conditioning loads, 
infrastructure failures due to overheating, and disproportionate impacts 
on vulnerable groups all indicate that urban heat has become a pressing 
urban environmental challenge requiring global attention (Simpson 
et al., 2024; Fang et al., 2025).

Urban heat phenomena exhibit highly complex systemic character
istics, posing challenges to traditional research methods (Hochrainer- 
Stigler et al., 2023; Simpson et al., 2021). From a spatial dimension, 
urban heat displays significant multi-scale heterogeneous characteris
tics, from building and neighborhood-scale local microclimates to city- 
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wide and regional temperature patterns, with each scale presenting 
unique thermal environment characteristics and variation patterns (Ye 
and Yang, 2025). From a temporal dimension, urban heat exhibits 
complex dynamic change patterns, including diurnal cycles, seasonal 
fluctuations, and interannual variations (Amnuaylojaroen, 2025; Wang 
et al., 2024). This spatiotemporal complexity makes accurate prediction 
and assessment of urban heat extremely difficult. More complex still, 
urban heat is controlled by the coupling of various natural and 
anthropogenic factors, including urban morphological characteristics, 
land use types, transportation and industrial activity intensity, and en
ergy use patterns (Brelsford et al., 2024). The intricate interactions 
among these factors make comprehensive understanding and precise 
modeling of urban heat phenomena a significant challenge.

Traditional statistical methods and numerical climate models have 
obvious limitations in addressing the above complexity. Traditional 
statistical methods struggle to handle high-dimensional nonlinear re
lationships, while numerical climate models suffer from high compu
tational costs and limited resolution (H.-C. Zhu et al., 2024a). In recent 
years, the rapid development of artificial intelligence technology (this 
paper focuses primarily on AI dominated by machine learning and deep 
learning) has provided opportunities to address these challenges. 
Advanced methods such as machine learning and deep learning possess 
powerful capabilities for processing large-scale, multi-source heteroge
neous data, effectively integrating multidimensional information sour
ces including ground monitoring networks, satellite remote sensing 
imagery, street view data, and building morphology databases, 
achieving precise modeling of complex nonlinear relationships, and 
significantly improving prediction accuracy and computational effi
ciency across multiple spatiotemporal scales (Östh et al., 2025; Rui et al., 
2025). In the field of urban heat research, AI technology has been widely 
applied to various core tasks, including high-resolution land surface 
temperature or air temperature retrieval, analysis of urban heat island 
spatiotemporal evolution patterns, prediction of heat wave occurrence 
and intensity, heat exposure risk assessment, and climate adaptation- 
oriented urban planning scenario simulation and optimization (Briegel 
et al., 2023; Fujiwara et al., 2024; Gong et al., 2025).

Although existing review literature has explored AI applications in 
urban thermal environment research, significant knowledge gaps 
remain in the research scope and methodological frameworks. On one 
hand, most existing reviews focus on specific phenomena within urban 
heat, particularly urban heat island effects, while neglecting the inte
gration of heat wave prediction, exposure assessment, and adaptive 
design. For example, Ghorbany et al. (2024) reviewed methodological 
evolution and machine learning applications in urban heat island 
research, noting that the integration of machine learning significantly 
expanded capabilities for complex prediction and analysis, but their 
research context was limited to urban heat island phenomena. In 
contrast, our review encompasses the full spectrum of urban extreme 
heat issues, including heat waves, heat exposure, and thermal stress, 
providing a more comprehensive perspective on AI applications. For 
instance, Castro and Delina (2025) reviewed research progress in policy- 
making combined with AI technology for addressing extreme heat, but 
focused on policy aspects and stakeholder response strategies, with 
insufficient elaboration on AI methods' technical details. Similarly, 
Camps-Valls et al. (2025) reviewed AI applications in analyzing various 
extreme climate events, including floods, droughts, wildfires, and heat 
waves, emphasizing the importance of building accurate, transparent, 
and reliable AI models, but lacking in-depth analysis specific to the 
urban heat domain. Unlike these prior reviews, our study uniquely in
tegrates a four-component governance framework that systematically 
connects forecasting, monitoring, mitigation, and decision support, 
enabling a holistic understanding of AI's role across the entire heat risk 
management chain.

Comprehensively, current AI-enabled urban heat research shows 
obvious deficiencies in systematic application frameworks, methodo
logical system integration, and practical guidance, particularly lacking 

holistic modeling of heat risk chains as multi-stage dynamic feedback 
systems. Existing research often focuses on specific tasks or single con
texts, such as improving heat wave prediction accuracy or identifying 
spatial distributions of heat exposure, lacking collaborative analysis and 
holistic thinking across different stages, including prediction, assess
ment, adaptation, and decision-making, and has not fully leveraged AI 
technology's cross-stage collaborative empowerment potential. Based on 
this, this review aims to systematically address the shortcomings in 
existing research. The main contributions of this study are as follows: 

• We construct a comprehensive four-component framework (fore
casting and early warning, monitoring and assessment, mitigation 
and adaptation, scenario simulation and decision support) for AI 
applications in urban extreme heat governance.

• We systematically review 102 publications to document diverse AI 
methods and identify technical challenges and practical barriers.

• We reveal the “Northern bias” in existing research and highlight 
knowledge gaps in sub-Saharan Africa and Latin America.

• We propose future directions emphasizing causal inference, multi- 
objective optimization, and integrated physical-social data 
frameworks.

Through systematic review and critical analysis, this study provides 
guidance for AI-driven urban heat research, promoting climate-resilient 
city construction.

2. Methodology

This study employs a systematic literature review methodology to 
explore the topic of “artificial intelligence applications in urban extreme 
heat research,” systematically analyzing the current status, technical 
challenges, and future development directions of AI technology appli
cations in urban heat forecasting and early warning, monitoring and 
assessment, mitigation and adaptation, and scenario simulation and 
decision support. The review process follows the PRISMA (Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses) guidelines 
to ensure systematicity, transparency, and reproducibility (Page et al., 
2021). Based on in-depth analysis of existing literature, we constructed a 
comprehensive framework for AI-enabled urban extreme heat 
management.

2.1. Literature search and screening

A comprehensive search was conducted in the Scopus database for 
English-language peer-reviewed articles and conference papers pub
lished from January 2020 to April 21, 2025. The year 2020 was selected 
as the starting point based on the rapid development and application of 
deep learning technologies in climate and urban research domains 
during this period.

The search strategy was structured around three intersecting themes: 
(1) artificial intelligence methods, (2) urban extreme heat, and (3) 
application scenarios. The final search query was formulated as: TITLE- 
ABS-KEY((“deep learning” OR “AI” OR “artificial intelligence”) AND 
(“urban heat*” OR “extreme heat” OR “heat wave” OR “urban heat is
land”) AND (predict* OR forecast* OR adapt* OR assess*)) AND PUB
YEAR >2019 AND PUBYEAR <2026 AND LANGUAGE(english) AND 
(DOCTYPE(ar) OR DOCTYPE(cp)) AND (LIMIT-TO (SUBJAREA,”SOCI”) 
OR LIMIT-TO (SUBJAREA,”ENVI”) OR LIMIT-TO (SUBJAREA,”EART”)).

To ensure high quality and relevance of included literature, rigorous 
inclusion and exclusion criteria were established. Inclusion criteria 
comprised: (1) peer-reviewed articles published in SCI/SSCI-indexed 
journals or high-quality international conferences; (2) empirical 
studies explicitly applying AI techniques to address urban heat-related 
problems; (3) research focusing on extreme heat phenomena at urban 
or metropolitan scales; (4) studies providing clear methodological de
scriptions and validation results; (5) articles written in English. 
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Exclusion criteria included: (1) purely theoretical studies or review ar
ticles (although relevant reviews were used for supplementary refer
ence); (2) non-peer-reviewed literature (technical reports, preprints, 
conference abstracts, etc.); (3) studies with scope limited to indoor en
vironments or non-urban areas; (4) research employing only traditional 
statistical methods without AI technology involvement; (5) articles with 
insufficient data availability or inadequate methodological descriptions.

2.2. Literature screening and quality assessment

The initial search yielded 145 publications. After removing duplicate 
entries using EndNote software, we conducted preliminary screening of 
titles and abstracts of the remaining literature, excluding 27 publica
tions that clearly did not meet the inclusion criteria. Subsequently, we 
assessed the quality of these articles using the Critical Appraisal Skills 
Programme (CASP) checklist (Supplementary Note S1), a standardized 
tool for evaluating the rigor and reliability of systematic review studies 

Fig. 1. PRISMA flow diagram illustrating the systematic literature screening and selection process.
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(Long et al., 2020). The final quality assessment resulted in a core 
dataset of 102 publications suitable for in-depth analysis. The complete 
flow diagram illustrating the systematic literature screening and selec
tion process is presented in Fig. 1.

2.3. Data extraction and analytical framework

We employed a structured data extraction method, systematically 
recording key information from each study, including: (1) basic research 
information: publication year, study area, spatial scale; (2) data char
acteristics: data source types, temporal span, spatial resolution; (3) 
technical methods: AI model types, algorithm architecture, performance 
evaluation metrics; (4) application scenarios: specific task types, core 
problems addressed, practical application effects.

Based on in-depth analysis of existing research, we constructed the 
comprehensive framework for AI-enabled urban extreme heat manage
ment as shown in Fig. 2. This framework is based on multimodal data 
fusion, integrating multi-source information including meteorological 
observations, satellite remote sensing, reanalysis data, and socioeco
nomic data; supported by diverse AI models as core technical infra
structure, encompassing methodological systems including supervised 
learning, unsupervised learning, semi-supervised learning, and special
ized AI; and centered around the complete process of urban heat risk 
management, categorizing AI applications into four key components: 
forecasting and early warning (achieving spatiotemporal prediction and 
proactive response), monitoring and assessment (supporting high- 
resolution mapping and comprehensive risk assessment), mitigation 
and adaptation (optimizing intervention effects and generating inno
vative designs), and scenario simulation and decision support (simu
lating future scenarios and promoting interactive governance). This 
framework provides an analytical framework for systematically 
reviewing current AI applications in urban heat research and establishes 
a foundation for identifying research gaps and exploring future research 
directions.

3. Overview of selected literature

3.1. Spatial distribution

To assess the geographical coverage of existing research, we con
ducted a visualization analysis of the study locations in the included 

literature. As shown in Fig. 3 (left), the site selection in existing litera
ture exhibits a pronounced “northern bias” pattern: most research sites 
are densely distributed in economically and scientifically advanced 
countries in the mid-latitudes of the Northern Hemisphere, particularly 
concentrated along the east and west coasts of the United States and the 
Great Lakes region, as well as in Western and Central Europe. However, 
when using the “Brandt Line” as a reference, we observe a characteristic 
pattern in the Global South of point-based clustering coexisting with 
large areas of sparsity: the southern coastal regions of China and the 
Indian subcontinent, despite being located south of the line, still 
concentrate a substantial number of sample sites, constituting the most 
active research hotspots within the Global South. In contrast, sub- 
Saharan Africa, inland Latin America, and Pacific island nations are 
virtually uncovered, creating extensive knowledge gaps.

The treemap in Fig. 3 (right) further quantifies this concentration, 
with numbers representing the total count of urban study locations 
involved in each country within the reviewed literature. Asia contrib
utes more than half, with China alone accounting for 293 entries, rep
resenting over a quarter of the total sample; India, South Korea, Japan, 
and several Southeast Asian countries form the secondary tier. North 
America is absolutely dominated by the United States (210 entries), with 
Canada contributing only a minor portion. Europe displays a multipolar 
pattern, with research powerhouses including France, Germany, Italy, 
the United Kingdom, and Russia each forming medium-scale modules. 
Oceania relies almost entirely on Australia, while South America and 
Africa contribute only sporadically. This reveals that the current 
research landscape not only exhibits a North-South divide but also 
demonstrates regional polarization within the Global South. Future ef
forts urgently need to strengthen data collection and cross-regional 
collaboration in underrepresented regions to enhance the global appli
cability and contextual diversity of research.

3.2. Word cloud

Fig. 4 presents a word cloud visualization of keywords from the 
reviewed literature. “Urban,” “heat,” “machine learning,” “tempera
ture,” “urban heat island,” and “climate change” constitute the largest 
visual weights, indicating that mechanistic research and intelligent 
prediction of urban heat exposure in the context of climate change 
represent the current focal points of academic attention. The co- 
occurring terms “adaptation,” “heatwave,” “resilience,” and 

Fig. 2. Integrated framework for AI applications in urban extreme heat management.
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“vulnerability” reveal that research not only focuses on the thermal 
environment itself but also emphasizes interdisciplinary exploration of 
population vulnerability, resilience, and adaptive strategies.

From a methodological dimension, the simultaneous appearance of 
terms such as “deep learning,” “neural network,” “regression,” “random 
forest,” “xgboost,” and “lstm” reflects the coexistence and integration of 
traditional statistical regression with diverse machine learning models. 
Terms like “data,” “analysis,” “model,” “prediction,” and “simulation” 
suggest that data-driven prediction-simulation frameworks constitute 
the technical mainline of research. Spatial information technology 
characteristics are also prominently featured: keywords including 
“remote sensing,” “spatial,” “geospatial,” “land surface,” as well as 
“surface temperature” and “spatial distribution” indicate that substan
tial research relies on satellite or aerial remote sensing to acquire high- 
resolution thermal environment data and employs spatial modeling to 
analyze the heterogeneous patterns of urban heat islands.

At the application and practice level, the frequent occurrence of 
“urban planning,” “green space,” “cooling,” “vegetation,” “green infra
structure,” and “management” demonstrates that urban planning and 
green infrastructure are emerging as key pathways for mitigating and 
adapting to extreme heat. Terms such as “public health,” “health risk,” 
“mortality,” and “heat exposure” emphasize the direct impacts of heat 
risk on health, highlighting the close integration between scientific 
research and public health strategies. Overall, this word cloud reveals an 
interdisciplinary, multi-scale research landscape: employing artificial 
intelligence as the core methodology, integrating climate science, urban 
planning, public health, and remote sensing geographic information 

systems to achieve monitoring, prediction, assessment, and adaptive 
management of urban extreme heat risks.

3.3. Data and AI models

3.3.1. Data sources and types
Fig. 5 illustrates the primary data sources for AI applications in urban 

extreme heat research and their relationship with the geographical lo
cations of study areas. From the perspective of data source composition, 
National Meteorological Services and Satellite Remote Sensing consti
tute the most dominant data sources. Academic Research Institutions 
and Open-Access Databases also provide substantial preprocessed, 
quality-controlled secondary datasets, thereby reducing the barriers to 
data preparation. Some studies further integrate data from Commercial 
Platforms, Public Health Organizations, and International Agencies. 
Although these represent a relatively small proportion, they demon
strate an expansion toward multidimensional, comprehensive research 
that incorporates socioeconomic activities and public health impacts.

Different regions also exhibit distinct patterns of data dependency. 
Urban research in China primarily relies on official meteorological and 
remote sensing data, emphasizing high-resolution observational data. 
Research in the United States, while also depending on meteorological 
and remote sensing data, shows a greater tendency to utilize academic 
institutions and open databases, reflecting the diversity of data sources. 
Europe demonstrates a balanced integration of multiple data types, 
emphasizing multi-source data integration and analysis.

Fig. A1 illustrates that beyond reliance on meteorological and remote 
sensing data, studies increasingly address social vulnerability, health 
risks, and the coupling of urban spatial and environmental pressures. It 
is worth noting that the data fusion approaches employed in the 
reviewed studies predominantly rely on feature-level concatenation, late 
fusion, and simple ensemble strategies. More advanced fusion tech
niques, such as variational data assimilation methods that enforce 
physical consistency, graph-based fusion models that capture complex 
spatial dependencies, and knowledge-graph-supported integration that 
enables semantic interoperability across heterogeneous sources, remain 
largely underexplored in the current literature despite their demon
strated potential in related domains. Fig. A2 and Fig. A3 illustrate the 
types of data spans used in the reviewed studies and the availability of 
code, respectively.

3.3.2. AI models
Fig. 6 presents the distribution of AI methods and models applied in 

urban extreme heat research. Overall, supervised learning represents the 
most widely applied paradigm in this field, with traditional machine 
learning and deep learning constituting the two dominant branches 
within this category. Traditional machine learning models, such as 

Fig. 3. Spatial distribution of urban extreme heat studies: (Left) global distribution map; (Right) country-wise case study statistics.

Fig. 4. Word Cloud of keywords.
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Fig. 5. Sankey diagram of geographic distribution and data sources of reviewed literature.

Fig. 6. AI method framework and model distribution in urban extreme heat research.
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Random Forest, Support Vector Machine, and XGBoost, maintain a 
central position in fundamental tasks, including heat risk assessment 
and driving factor attribution, due to their robustness in handling 
limited datasets, superior interpretability, and computational efficiency. 
Deep learning methods are predominantly represented by Convolutional 
Neural Networks (CNN), Long Short-Term Memory networks (LSTM), 
ResNet, and U-Net. These models can automatically extract multi-scale, 
high-dimensional spatial and temporal features from data, making them 
widely applicable in scenarios such as high-resolution thermal field 
reconstruction, spatiotemporal sequence prediction, and remote sensing 
image interpretation. Ensemble learning (including Bagging, Boosting, 
and Stacking) serves as an effective performance enhancement strategy 
that further improves the generalization capability and robustness of 
prediction results by integrating the advantages of multiple models.

Unsupervised learning also provides powerful tools for exploring 
intrinsic data structures, primarily encompassing clustering, dimen
sionality reduction, and generative models. For instance, methods such 
as K-means and t-SNE facilitate automatic discovery of latent patterns 
from large-scale data, providing technical support for tasks including 
urban functional zone identification and heat island heterogeneity 
analysis. Generative Adversarial Networks (GANs) and similar models 
demonstrate potential in data augmentation and scenario simulation. In 
recent years, to address the challenges of limited labeled data and 
complex relationships, the application of semi-supervised learning has 
rapidly developed, particularly models represented by Graph Neural 
Networks (GCN, GAT, GraphSAGE, etc.), which can effectively model 
spatial neighborhood relationships and complex network structures, 
supporting fine-grained characterization of interactions between urban 
thermal environments and human activities.

Notably, a series of specialized AI methods, deeply integrated with 
domain-specific problems, are emerging as new research hotspots. 
Physics-informed AI (such as Physics-informed Neural Networks and 
Physics-guided Machine Learning) combines physical processes with 
data-driven approaches, enhancing model generalizability and inter
pretability. Specifically, these methods embed governing equations such 
as heat transfer and energy balance constraints as soft constraints in the 
loss function, enabling models to learn physically consistent represen
tations even with limited training data and to generalize more reliably to 
unseen climate scenarios. Spatiotemporal learning frameworks, 
including ConvLSTM and spatial-temporal graph convolutional net
works, jointly model the evolution of thermal patterns across space and 
time, capturing coupled dynamics that conventional approaches cannot 
represent. Transfer learning enables models pretrained on data-rich 
cities to be fine-tuned for data-scarce contexts, while meta-learning 
trains models to rapidly adapt to new urban environments with mini
mal examples, directly addressing the Northern bias by providing 
pathways to leverage existing research for global benefit.

4. AI applications in urban extreme heat research

This section will review the current state of AI technology applica
tions in urban extreme heat governance based on the included literature. 
The content will be organized around four key components: forecasting 
and early warning, monitoring and assessment, mitigation and adapta
tion, and scenario simulation and decision support. The analysis will 
focus on the technical characteristics of different methods and their 
applicable contexts, while exploring pathways and the practical effec
tiveness of AI-enabled urban thermal resilience enhancement.

4.1. Forecasting and early warning

Forecasting and early warning refer to the advanced identification of 
extreme heat events' occurrence timing, intensity, and affected areas by 
leveraging multi-source data, including meteorological, remote sensing, 
urban morphological, and social dynamic data, and the timely trans
mission of risk information to governments and the public through 

tiered warning mechanisms (Hajat et al., 2010). Against the backdrop of 
escalating urban extreme heat risks, AI technology has become a core 
technical approach for establishing efficient urban extreme heat warn
ing systems and enhancing urban climate adaptation capacity, owing to 
its advantages in multi-source data fusion, complex pattern recognition, 
and real-time dynamic prediction. Current fusion practices primarily 
involve feature stacking and model ensembling, while emerging ap
proaches such as physics-informed data assimilation, spatiotemporal 
graph neural networks, and attention-based cross-modal fusion offer 
promising directions for improving prediction consistency across het
erogeneous data sources (Bi et al., 2023; Lopez-Gomez et al., 2023). 
Related research exhibits distinct methodological differences in 
modeling approaches, primarily including modeling methods based on 
traditional machine learning and explainability techniques, complex 
feature learning prediction mechanisms based on deep learning, and 
hybrid modeling frameworks that integrate the advantages of different 
models to achieve spatiotemporal collaborative prediction (Krishnaraj 
et al., 2025; Rashtian et al., 2025; Shen et al., 2024). These methods not 
only demonstrate different characteristics in prediction accuracy and 
generalization capability but also show differences in functional 
emphasis, collectively expanding the applicable scenarios and response 
timeliness of urban heat warning systems.

Methods represented by traditional machine learning models are 
widely adopted in heat prediction due to their high modeling efficiency 
and strong feature interpretability, primarily applied in short-term 
urban heat prediction tasks with low data dimensionality or requiring 
strong interpretability. Algorithms such as Random Forest (RF), Light 
Gradient Boosting Model (LGBM), Extreme Gradient Boosting 
(XGBoost), and CatBoost demonstrate good robustness when processing 
multidimensional static and dynamic variables, while requiring modest 
computational resources and moderate labeled datasets, making them 
feasible for real time applications in resource constrained settings 
(Chongtaku et al., 2024; Oliveira et al., 2022; Rashtian et al., 2025; Shen 
et al., 2024; Varentsov et al., 2023). Research typically uses ground 
observation data, remote sensing temperature data, urban surface and 
morphological factors as input features to predict target temperature 
variables such as land surface temperature, 2-m air temperature ex
tremes, or urban heat island intensity. RF was used in one study to 
downsample numerical weather prediction (NWP) data, successfully 
improving temperature prediction accuracy from 2.5 km to 250 m, 
achieving effective identification of local heat hotspots during high- 
temperature periods and significantly enhancing warning precision at 
the urban level (Oliveira et al., 2022). Additionally, these models often 
combine with explainability tools such as SHAP to analyze the marginal 
contributions and influence mechanisms of variables like vegetation 
coverage and building density on prediction results, providing decision 
support for spatial heterogeneity identification and intervention strate
gies (Lee et al., 2024; Shen et al., 2024).

Compared to machine learning models, deep learning models play an 
important role in urban heat risk prediction with their stronger 
nonlinear modeling capabilities and high-dimensional feature learning 
advantages. Particularly when processing high-frequency time series 
data and high-resolution image data, deep neural networks possess 
obvious performance advantages. Convolutional Neural Networks 
(CNN) are widely used to extract spatial features from remote sensing 
images, supporting the identification of high-risk areas from urban-scale 
LST images or downsampling reanalysis data to fine-scale block-level 
heat exposure maps (Johannsen et al., 2024). Temporal models such as 
Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU) are 
suitable for processing hourly to daily-scale air temperature and heat
wave trend prediction tasks, though they require substantial labeled 
data and GPU-accelerated infrastructure, offering superior accuracy 
when sufficiently high-resolution dense data are available (Qureshi 
et al., 2025; Krishnaraj et al., 2025; Tehrani et al., 2024; Zuccarini, 
2024). For example, Krishnaraj et al. (2025) integrated LSTM into a 
multi-technology fusion microclimate management system, utilizing its 
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temporal modeling capability to accurately predict environmental var
iables such as temperature and humidity, and combined with IoT data 
collection and blockchain secure transmission to construct an intelligent 
environmental control framework with real-time response.

As urban data structures become increasingly complex, more 
research is beginning to explore fusion methods of multiple AI models, 
forming ensemble modeling systems. Beyond model ensembling, hybrid 
approaches that couple data-driven AI with process-based physical 
models are emerging, where numerical weather prediction outputs serve 
as physics-based constraints or initial conditions for machine learning 
refinement, enabling the preservation of physical consistency while 
leveraging AI capabilities for bias correction and downscaling. These 
models typically embed different types of models through multi-module 
collaborative approaches, fully utilizing their respective advantages to 
enhance overall prediction capability, particularly suitable for con
structing urban warning systems under multi-source heterogeneous data 
scenarios. Mukarram et al. (2025) hybridized traditional ML with deep 
learning, using LSTM to capture trends and cyclical components in 
temperature time series, then feeding its output as input to XGBoost for 
final prediction, achieving dual representation of spatial and temporal 
features. Other research adopts functional division-based hybrid 
frameworks of multiple deep learning models: a U-Net and ConvLSTM 
hybrid modeling framework was used to predict marine heatwave in
tensity and occurrence probability, respectively, in the South China Sea 
region, achieving comprehensive prediction through dual-model 
collaboration (Sun et al., 2023).

4.2. Monitoring and assessment

Monitoring and assessment aims to characterize spatiotemporal 
patterns of thermal environments, quantify population exposure levels, 
and determine comprehensive risks by integrating social vulnerability 
through continuous observation and analysis, providing evidence to 
support subsequent interventions (Reid et al., 2009; Yoo et al., 2023). 
The application of AI in urban extreme heat monitoring and assessment 
is progressively evolving from static “thermal environment character
ization” toward dynamic “heat-population coupled risk identification.” 
Core tasks primarily encompass thermal environment monitoring, heat 
exposure identification, and heat health risk assessment, combined with 
social vulnerability (Li et al., 2024; Ma et al., 2025). In terms of technical 
approaches, while traditional statistical models are still applied in some 
studies, machine learning and deep learning methods represented by RF 
and U-Net have become the mainstream technical pathways. These 
methods demonstrate significant advantages in enhancing spatial 
monitoring accuracy, modeling complex nonlinear relationships, and 
analyzing social-environmental interaction mechanisms, helping rele
vant institutions effectively construct high-resolution heat risk moni
toring systems.

In thermal environment monitoring and heat exposure identifica
tion, AI technology has overcome the limitations of traditional remote 
sensing in spatiotemporal continuity. Research combines models such as 
RF and U-Net with multi-temporal Landsat or Sentinel thermal infrared 
imagery, integrating ground observation data for inversion analysis to 
achieve continuous spatial reconstruction of LST and urban heat island 
intensity (Puttanapong et al., 2025; Shaamala et al., 2025). For example, 
Puttanapong et al. (2025)’s study of the Bangkok metropolitan area 
demonstrated that models including RF, GTB, and SVM exhibit excellent 
performance in integrating remote sensing spectral indices with tem
perature estimation, accurately capturing the contributions of different 
urban surface types to heat island effects. Meanwhile, the U-Net model 
showed extremely high efficiency in high-resolution urban heat map
ping tasks in the Adelaide metropolitan area of South Australia, 
completing entire image processing in less than 30 s while maintaining 
stable prediction accuracy (Shaamala et al., 2025). Comparing these 
approaches, traditional machine learning models such as RF and 
XGBoost offer advantages in interpretability, lower computational costs, 

and robustness with smaller datasets, making them suitable for tabular 
data analysis and feature importance identification, whereas deep 
learning architectures like U-Net excel in processing high-dimensional 
imagery data and capturing complex spatial patterns but require 
larger training datasets and greater computational resources. Heat 
exposure identification has further promoted the transition from tradi
tional static indicators toward dynamic and refined approaches. Models 
such as XGBoost, stacked ensemble learning, and geographically 
weighted random forest are widely used to construct multidimensional 
heat exposure assessment systems, achieving separate modeling of 
daytime and nighttime exposure patterns by integrating dynamic pop
ulation distribution, meteorological elements, and urban spatial envi
ronmental characteristics (Erdem Okumus and Akay, 2025; Ma et al., 
2025; Yoo et al., 2023).

In heat health risk and social vulnerability assessment, AI models are 
widely applied to identify impact mechanisms linking environmental 
exposure with population sensitivity. One typical approach combines 
thermal environment variables such as LST and SUHI with socioeco
nomic data, employing interpretable machine learning or geospatial 
explainable artificial intelligence models to identify key risk factors 
affecting heat-related health outcomes. Foroutan et al. (2025) used 
GeoShapley methods and SHAP value analysis to examine spatial het
erogeneity between urban and rural areas, discovering significant dif
ferences in high-temperature health risk factors between these two types 
of regions, providing scientific evidence for regionalized public health 
intervention strategies. Li et al. (2024) proposed the U-HEAT frame
work, integrating multiple models, including support vector machines, 
RF, and CNN, combined with remote sensing and geographic data for 
classification modeling of urban heat vulnerability, achieving spatial 
identification of heat-vulnerable populations. Building on this founda
tion, some studies further introduce high-order spatial relationship 
modeling approaches to enhance model capability in identifying com
plex human-environment coupling patterns. A study based on Greater 
London constructed a Multi-Hypergraph Neural Network (MHGNN) 
framework, integrating street view images with geospatial multi-source 
information, effectively capturing structural patterns of urban heat- 
flood compound vulnerability by mining spatial proximity and high- 
order dependencies of urban neighborhoods, demonstrating superior 
performance in urban climate justice analysis (Liu et al., 2025).

Notably, some studies incorporate social media data into monitoring 
and assessment systems to capture residents' subjective perceptions and 
behavioral responses to extreme heat events. Natural language pro
cessing technologies, particularly deep semantic models based on BERT 
and RoBERTa, are used to extract sensitivity and emotional information 
from microblog data. While both models demonstrate strong capabilities 
in contextual understanding, BERT is more computationally efficient 
and suitable for standard sentiment classification tasks, whereas RoB
ERTa offers improved performance on nuanced semantic analysis 
through its optimized pretraining strategy, though at the cost of 
increased computational demands and data requirements. For example, 
Zhi et al. (2021) utilized BERT to analyze urban residents' sensitivity 
levels to heatwave events and linked this with land surface temperature 
data obtained from remote sensing, revealing spatial heterogeneity 
characteristics of heatwave sensitivity. Another study employed RoB
ERTa models combined with hotspot analysis and Apriori association 
rule mining methods to identify interaction mechanisms between 
different urban functional zones and residents' emotional changes, 
revealing the role of functional spatial structures in shaping emotional 
health differences during heatwave periods (Y. Zhu et al., 2024b).

4.3. Mitigation and adaptation

Mitigation and adaptation, as core strategies for addressing urban 
extreme heat, emphasize proactive responses to current and future 
extreme heat impacts through adjustments to urban systems, infra
structure, and management approaches, aiming to enhance urban 
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thermal resilience and resident welfare (Kumar et al., 2024). In recent 
years, AI applications have not only achieved precise identification of 
cooling thresholds for green-blue infrastructure but also promoted fine- 
tuned regulation of urban structural elements (Feng et al., 2024; Han, 
2023). Simultaneously, the deep integration of generative AI with 
climate models has opened new pathways for climate-adaptive urban 
design, enabling dynamic assessment of different morphological impacts 
on thermal environments and optimization of design solutions during 
the planning phase (Zhou et al., 2025; Aydin et al., 2024; F. Jiang et al., 
2024b). Through multi-model collaboration based on machine learning, 
deep learning, and evolutionary algorithms, AI has further enhanced the 
capability to characterize cooling elements and their spatial heteroge
neity, providing efficient and intelligent solutions for key aspects, 
including urban planning, green infrastructure layout, and adaptive 
strategy selection.

AI is widely applied to optimize the planning and design of blue- 
green infrastructure to maximize its ecosystem service functions. At 
the macro level, AI models can determine vegetation coverage thresh
olds required to achieve maximum cooling benefits under different cli
matic contexts. For example, one study utilized Boosted Regression 
Trees (BRT) models, which balance predictive accuracy with interpret
ability and computational efficiency, to precisely calculate that dry-hot 
cities require ideal vegetation coverage of 30–40% through analysis of 
urban two-dimensional and three-dimensional landscape indicators, 
while humid-hot cities need as high as 60–80% to achieve optimal 
cooling effects (Ren et al., 2024). In specific urban park design, Yang 
et al. (2025) similarly employed BRT models to reveal that park area, 
shape, edge density, and internal vegetation and water body proportions 
are key variables affecting “cool island” intensity through analysis of 
park landscape patterns along urban-rural gradients. To address 
regional variations, researchers have also applied geographically 
weighted random forest models, which, due to their advantages in 
capturing spatial heterogeneity, can provide differentiated and refined 
green space configuration recommendations based on specific condi
tions of different urban functional zones such as commercial and in
dustrial areas (Zhang et al., 2025). AI applications have been refined to 
the individual tree level, where Das et al. (2022) combined geospatial 
artificial intelligence with the deep learning model Faster R-CNN to 
successfully achieve automatic identification and inventorying of urban 
trees through analysis of high-resolution aerial images, thereby quan
tifying the cooling contributions of specific tree species. For green roofs 
as a specific mitigation measure, artificial neural networks (ANN) are 
used to integrate LiDAR and satellite imagery data to assess their cooling 
potential under different building heights, sky view factors, and solar 
radiation conditions, ultimately recommending priority implementation 
on mid-rise buildings for optimal benefits (Kafy et al., 2024).

Researchers can also identify key heat mitigation factors in built 
environments through AI and use this guidance for comprehensive 
renovation of built-up areas and innovative design of future urban 
forms. Various machine learning models are effectively used to analyze 
complex nonlinear relationships between urban morphology and ther
mal environments. Research employing Gradient Boosting Decision 
Trees (GBDT) successfully identified that vegetation index (NDVI) and 
green space proximity are important nonlinear factors affecting land 
surface temperature (Kim, 2024). Similarly, ensemble learning models 
are used to deconstruct multiple driving factors, clearly indicating that 
morphological factors such as building density and floor area ratio 
significantly exacerbate extreme heat, while green spaces and water 
bodies provide crucial mitigation effects (Liu et al., 2024). Building on 
this foundation, with the aid of explainable AI tools such as SHAP, re
searchers can further quantify the specific weights of these urban design 
elements on urban heat, helping urban planning departments formulate 
more precise intervention strategies (Li et al., 2025). Furthermore, AI 
technology is further applied to guide the comprehensive renovation of 
built-up environments and innovative design of future urban forms. 
Through analysis of Local Climate Zones (LCZ), AI evolutionary 

algorithms such as Genetic Algorithms (GA) and Particle Swarm Opti
mization (PSO) can explore and optimize combinations and spatial 
layouts of different LCZs to achieve the overall goal of mitigating heat 
island effects (Mohamed and Zahidi, 2024). More forward-looking 
research explores how to deeply integrate generative AI with climate 
models to achieve innovative climate-adaptive urban design. Wang et al. 
(2025) constructed a hybrid Generative Adversarial Network (GAN) 
framework combining Pix2pix and CycleGAN, integrating morphology 
generation with performance assessment to dynamically examine the 
impacts of different urban designs on heat island intensity, achieving 
climate-responsive optimization of urban forms during the early plan
ning stage.

4.4. Scenario simulation and decision support

Scenario simulation and decision support refer to constructing urban 
thermal environment evolution models under different development 
scenarios, analyzing the potential effects of various intervention mea
sures, and providing scientific decision-making evidence and tool sup
port for policymakers, planners, and managers (D'Ambrosio et al., 2023; 
Pan et al., 2024). In this field, AI applications are driving a trans
formation of traditional urban management toward more forward- 
looking, interactive, and scientific paradigms. AI not only provides 
key insights for long-term strategic planning through complex scenario 
simulations but also extends decision support to multiple levels, 
including real-time operations and public participation through inno
vative forms such as digital twins and interactive tools, significantly 
enhancing the intelligence level of urban thermal environment gover
nance (Elnabawi and Raveendran, 2024; Luo et al., 2025; Ye et al., 
2025a).

Scenario simulation represents one of the core applications of AI- 
enabled strategic decision-making. By integrating multidimensional 
data, including land use, climate change, and socioeconomic factors, 
machine learning models can simulate and predict future thermal en
vironments under different development pathways. Researchers have 
successfully predicted the evolution trends of land surface temperature 
and heat island intensity over the coming decades under different urban 
expansion and land use change scenarios using models such as Artificial 
Neural Networks (ANN) and Cellular Automata (CA) (Ashwini et al., 
2024). Additionally, Lan et al. (2023) combined Shared Socioeconomic 
Pathways (SSPs) and Representative Concentration Pathways (RCPs) to 
conduct spatially explicit predictions of urban heat island risks and 
population exposure under different climate-socioeconomic policy 
combinations through ANN models, helping decision-makers formulate 
more effective macro-level climate adaptation policies.

Urban digital twins, as an advanced decision support platform, are 
becoming an important vehicle for AI applications, offering advantages 
over traditional scenario modeling approaches such as ANN-based 
simulations in terms of real-time responsiveness and interactive visual
ization capabilities. They can integrate high-precision three-dimen
sional urban models, real-time sensor data, and climate simulation 
models to construct a virtual city parallel to the physical world, though 
their implementation requires significantly higher data infrastructure 
investments compared to standalone predictive models. Within this 
virtual environment, managers can test the impacts of different long- 
term planning scenarios (such as increasing green spaces or changing 
building layouts) on heat island distribution and intuitively assess their 
effectiveness through visualization (Vitanova et al., 2025). This tech
nology's application is further deepening toward real-time operational 
decision-making. A typical example is the application of Smart City 
Digital Twin (SCDT) systems, which not only contain static urban 
models but also utilize computer vision algorithms (such as YOLOv3) to 
analyze real-time pedestrian flow data and combine meteorological data 
with time series forecasting models (such as SARIMA) to assess and 
predict short-term collective heat exposure risks in specific areas (Pan 
et al., 2024). This real-time analysis and prediction capability enables 
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managers to conduct preventive interventions, issuing timely warnings 
or deploying mobile cooling facilities when high heat exposure risks are 
predicted, achieving a decision-making closed loop from long-term 
planning to immediate response.

AI has also spawned a series of intelligent decision support tools 
covering professional planning to public participation. For professional 
planners, these tools provide highly specialized solutions. For example, 
Kumar and Mishra (2025) constructed urban heat vulnerability indices 
based on fuzzy logic and Analytic Hierarchy Process (AHP) to support 
priority intervention area ranking under resource-limited conditions. In 
urban infrastructure management, AI optimization methods such as 
column generation algorithms are used to enhance public transportation 
system service resilience under high temperatures by optimizing routes 
and frequency schedules to provide safer travel options for citizens 
(Huang et al., 2024). More importantly, AI applications are not limited 
to the expert level but are also becoming an important bridge for pro
moting public participation and enhancing community climate resil
ience. One innovative practice designed interactive workshops 
combining AI and LEGO blocks, where participants build LEGO cities 
representing different land uses, and a simplified AI model instantly 
calculates and visualizes the temperature distribution of their designed 
cities (Covaci et al., 2024). This educational and entertaining approach 
significantly lowers the threshold for understanding climate science and 
stimulates public enthusiasm for participating in urban climate adap
tation actions. However, the practical integration of such participatory 
outputs into formal planning processes remains challenging, as sys
tematic mechanisms for translating public inputs into actionable policy 
recommendations are still lacking in most urban governance frame
works. This trend aligns with the broader shift toward digital, interac
tive approaches in environmental impact assessment, where emerging 
platforms have shown potential to enhance public engagement, though 
challenges remain in ensuring accessibility across different age groups 
and digital literacy levels (Northmore and Hudson, 2022).

5. Discussion

5.1. Challenges and gaps in current research

Synthesizing across all four governance components, core bottle
necks emerge at both data and model levels. At the data level, persistent 
challenges include acquisition constraints (high sensor costs, limited 
satellite revisit frequencies), quality issues (measurement uncertainties, 
missing values, inconsistent calibration), and fusion difficulties (recon
ciling different spatiotemporal resolutions and semantic definitions). At 
the model level, key challenges include the accuracy-efficiency tradeoff, 
interpretability limitations of black-box architectures, generalization 
failures across different urban contexts, and insufficient uncertainty 
quantification for risk-based decision-making. In forecasting and early 
warning, AI applications face core challenges, including the balance 
between prediction accuracy and computational efficiency, insufficient 
multi-scale prediction capabilities, and difficulties in quantifying un
certainties in extreme event prediction. While deep learning models 
excel in complex nonlinear relationship modeling, their high computa
tional complexity conflicts with the real-time response requirements of 
urban heat warning systems. Particularly in high-resolution multi- 
source data fusion scenarios, models such as LSTM and CNN often 
require lengthy training times, making it difficult to support rapid 
warnings for sudden heatwave events (Johannsen et al., 2024; Krish
naraj et al., 2025; Tehrani et al., 2024). Furthermore, urban heat phe
nomena exhibit significant scale differences from microclimate to macro 
patterns, but current AI models typically only cover specific scales. 
Although random forest based on NWP data can downsample spatial 
resolution to the hundred-meter level, its accuracy and application at 
street or building scales remain limited (Oliveira et al., 2022). This scale 
limitation not only affects spatially refined warnings but also constrains 
differentiated services for different user groups. Notably, existing 

research focuses primarily on improving prediction accuracy while 
lacking systematic quantification of prediction uncertainties (Sun et al., 
2023; H.-C. Zhu et al., 2024a). AI models often output results with high 
confidence but lack reliable uncertainty estimates, leading decision- 
makers to potentially underestimate risks or create imbalanced 
resource allocation during emergency responses.

AI challenges in monitoring and assessment primarily stem from 
multi-source data fusion, quantification of socioeconomic dimensions, 
and the dynamism and precision of assessment results. From a technical 
perspective, most existing studies adopt relatively straightforward 
fusion strategies, including early fusion (concatenating raw features), 
late fusion (combining model outputs), and weighted averaging. How
ever, more sophisticated methodologies, such as variational and 
ensemble-based data assimilation for enforcing physical constraints, 
heterogeneous graph neural networks for modeling cross-source re
lationships, and knowledge-graph-based frameworks for semantic 
alignment and ontology-driven integration, have been rarely employed 
in urban heat research. This methodological gap limits the capacity to 
effectively reconcile discrepancies in spatiotemporal resolution, mea
surement uncertainty, and semantic granularity across diverse datasets, 
thereby constraining the accuracy and reliability of integrated risk as
sessments. Monitoring and assessment heavily rely on remote sensing, 
ground observations, and statistical data, but these data sources are 
difficult to fully match in terms of spatiotemporal resolution, accuracy, 
and coverage, limiting dynamic and precise assessment of heat expo
sure. While models based on U-Net can efficiently produce maps, their 
effectiveness is constrained by the availability of high-quality imagery 
(Shaamala et al., 2025; Briegel et al., 2023). When incorporating social 
sensing data, such as social media, to assess public heatwave sensitivity, 
attention must be paid to issues including user group representativeness 
bias, data noise, and ambiguous emotional expression (Y. Cheng et al., 
2023b; Zander et al., 2023; Zhi et al., 2021). Furthermore, heat health 
risks are influenced by multiple factors, including environmental 
exposure, individual physiological sensitivity (such as age and under
lying diseases), and social adaptive capacity (such as housing condi
tions, air conditioning rates, and community support). Current AI 
models have limited capability in quantifying these complex, spatially 
heterogeneous socioeconomic vulnerabilities, often relying on crude 
proxy variables such as census data, making it difficult to reveal fine- 
grained differences at household or individual levels.

In mitigation and adaptation, core AI application challenges include 
causal inference in intervention effect assessment, the practical feasi
bility of optimization or automated solution generation, and the 
complexity of multi-objective trade-offs. While AI models can identify 
associations between green infrastructure and temperature reduction, 
such as BRT models precisely calculating vegetation coverage thresholds 
under different climatic contexts (Ren et al., 2024), establishing strict 
causal relationships remains difficult, limiting the reliability of AI 
technology in intervention strategy optimization. Urban morphology or 
green space layout solutions generated by AI optimization algorithms 
(such as genetic algorithms) (Mohamed and Zahidi, 2024) may theo
retically achieve optimal cooling effects but face practical constraints, 
including land ownership, construction costs, and conflicts with other 
planning objectives. The application of generative AI in climate- 
adaptive urban design is still in the exploratory stage, and the practi
cality and controllability of generated solutions require extensive vali
dation (Wang et al., 2025; Richards et al., 2024). It cannot be overlooked 
that urban heat mitigation often requires balancing goals such as 
improving transportation accessibility and ensuring housing supply, yet 
most current AI models have limited capability in handling such multi- 
objective, multi-constraint problems.

AI has driven innovative applications, including digital twins, 
interactive platforms, and multi-scenario decision tools in urban heat 
scenario simulation and decision support, but its limitations are pri
marily reflected in future uncertainties, practical implementation of 
decision support tools, and fairness in technology application. AI-based 
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scenario simulations heavily depend on input future climate change 
pathways (RCPs) and socioeconomic development pathways (SSPs) (Lan 
et al., 2023), and these pathways themselves contain enormous un
certainties that amplify with extended prediction timeframes, thereby 
affecting simulation result reliability. For decision platforms such as 
urban digital twins, their high construction costs, large data re
quirements, and high maintenance demands (Pan et al., 2024; Vitanova 
et al., 2025) make widespread adoption difficult in small and medium- 
sized cities. Even well-designed decision support tools depend on 
effective integration into existing urban governance frameworks for 
actual application effectiveness. How public opinions can be systemat
ically transformed into legally effective policy recommendations or 
incorporated into official planning processes remains an open gover
nance challenge (Covaci et al., 2024).

Comprehensively, deeper limitations lie in the current research's lack 
of holistic modeling that views urban heat risk chains as multi-stage, 
dynamic feedback complex systems (Brelsford et al., 2024; Westra and 
Zscheischler, 2023). Most AI-enabled research focuses on single-point 
optimization of specific segments or tasks, with relatively independent 
components. This results in high-precision time series predictions from 
warning models being difficult to directly and dynamically input and 
update spatial risk assessment models, while high-risk communities 
identified by assessment models often cannot automatically optimize 
mitigation and adaptation strategies, hindering translation to actual risk 
management. It should be emphasized that urban extreme heat phe
nomena involve complex mechanisms coupling climate, land use, so
cioeconomic factors, infrastructure, and health elements. Current AI 
models generally have a shallow theoretical understanding of these 
multi-scale, cross-domain interactions, often overlooking key cyclical 
feedback within systems. Similarly, social vulnerability is not static; 
during sustained heatwaves, community response capacity and re
sources evolve dynamically, but most assessment models fail to capture 
this process.

5.2. Opportunities and future research directions

Despite current challenges facing AI applications in urban extreme 
heat research, the field presents new development opportunities driven 
by rapid AI technological advancement, continuously enriched multi- 
source data resources, and growing demands for urban climate adap
tation and health resilience. Leveraging cutting-edge AI algorithms and 
higher-quality, multidimensional data, the future holds promise for 
achieving deep integration of physical environmental and social 
vulnerability information, driving research paradigm shifts toward 
causal inference, multi-objective optimization, and generative design, 
accelerating the integration of intelligent decision support systems for 
urban heat, and gradually realizing upgrades from fragmented appli
cations to integrated systems.

First, constructing comprehensive data frameworks that integrate 
physical environmental and social multidimensional information will 
help AI models advance from macro thermal effect simulation toward 
fine-grained risk prediction for communities and individuals. Deepening 
AI integration with meteorological physical models, combined with 
multi-source physical data from satellite remote sensing, ground sensor 
networks, and urban Internet of Things, can significantly enhance the 
spatial resolution and generalization capabilities of heat prediction 
(Briegel et al., 2024; Gong et al., 2025). Feasible integration strategies 
include data assimilation frameworks such as ensemble Kalman filters 
that optimally combine observational data with physical model fore
casts, hybrid sequential architectures where physical models generate 
initial predictions subsequently refined by neural networks, and physics- 
informed neural networks that embed energy balance equations directly 
into loss functions to ensure thermodynamic consistency. Transfer 
learning and meta learning are particularly critical for global equity as 
these techniques enable knowledge transfer from well-studied contexts 
to underrepresented regions without requiring equivalent data 

investments, systematically addressing the geographic imbalances 
documented in this review. To fully realize these benefits, future 
research should systematically explore and compare advanced data 
fusion paradigms. For instance, 4D-Var and ensemble Kalman filter data 
assimilation techniques can integrate observational data with numerical 
models while preserving physical consistency. Graph-based fusion ar
chitectures, including heterogeneous graph neural networks and spatial- 
temporal graph convolutional networks, can effectively capture com
plex dependencies across multi-modal urban data. Furthermore, 
knowledge graph frameworks can provide semantic scaffolding that 
enables ontology-driven integration, facilitating interoperability be
tween datasets with different terminologies and measurement protocols. 
Systematic benchmarking of these fusion approaches across diverse 
urban contexts would provide valuable guidance for method selection in 
practical applications. Further integration with advanced methods, such 
as Bayesian deep learning to quantify uncertainties in prediction results, 
will provide more reliable decision support for warning systems (Abdar 
et al., 2021). Simultaneously, a comprehensive heat risk assessment 
requires a deep understanding of human social vulnerability. With the 
proliferation of social media and health monitoring devices, residents' 
subjective thermal perception, emotional changes, and real-time be
haviors have become new critical dimensions. As noted in “Atlas of the 
Senseable City” (Picon and Ratti, 2023), massive urban real-time data is 
depicting a new urban map reflecting social dynamics, enabling obser
vation of previously invisible urban pulses. Therefore, future research 
can utilize AI technologies such as natural language processing and 
graph neural networks to combine these dynamic social sensing data 
with environmental exposure data, achieving dynamic tracking and a 
more refined assessment of human-environment coupled risks (Y. Cheng 
et al., 2023b; Zhao et al., 2025).

Enhancing AI capabilities in formulating heat mitigation and adap
tation strategies requires future research to urgently expand from 
traditional correlation analysis to deeper causal inference, shift from 
single-objective assessment to multi-objective collaborative optimiza
tion, and efficiently explore innovative cooling design solutions through 
generative AI. Effective heat mitigation strategies depend not only on 
understanding correlations between variables but also on revealing 
underlying causal mechanisms. Integrating algorithms such as causal 
inference, multi-objective optimization, and reinforcement learning 
helps dynamically assess comprehensive effects of multiple intervention 
measures, enhancing intelligent decision-making capabilities (Risser 
et al., 2025; Li et al., 2022; Li and Cheng, 2025). In practice, attempts 
can be made to deeply integrate physical process modeling, social- 
environmental system dynamics, and AI methods to achieve dynamic 
simulation of multiple elements, including climate, energy, health, and 
social behavior. Emerging methods such as generative AI and evolu
tionary algorithms also provide efficient design pathways for collabo
rative optimization of urban morphology and adaptive infrastructure 
(Makki et al., 2019; Wang et al., 2025). These technologies can auto
matically explore innovative design combinations, improving urban 
cooling effects and spatial utilization efficiency through intelligent 
iteration. However, practical application of these innovative methods 
still requires addressing real-world constraints, cost-benefit consider
ations, and multi-objective conflicts to enhance solution feasibility.

Advancement of intelligent decision support systems and digital twin 
technologies provides important platforms for AI-enabled heat gover
nance while offering opportunities to break through current research 
bottlenecks of fragmented segments lacking systematic coordination. 
This aligns closely with core viewpoints in “Introduction to Urban Sci
ence” (Bettencourt, 2021), which views cities as information processing 
systems forming complex feedback loops between people, physical en
vironments, and infrastructure. Based on this perspective, the future key 
lies in constructing systematic AI frameworks capable of connecting 
multi-stage risk management processes with dynamic feedback mecha
nisms. Through integration of multi-source real-time data, intelligent 
scenario simulation engines, and interactive visualization tools, organic 
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coordination of forecasting and warning, monitoring and assessment, 
mitigation and adaptation, and decision support can be achieved, ulti
mately forming complete closed loops from risk identification to intel
ligent response (Batty, 2018; Pan et al., 2024). In practical applications, 
high-precision heatwave warnings can automatically trigger real-time 
vulnerability assessments for specific communities and dynamically 
optimize cooling center operations and mobile cooling facility deploy
ment accordingly, achieving effective integration of risk perception and 
intelligent response. At the technical implementation level, promoting 
data standardization and model component modularization is necessary 
to facilitate open sharing of tool chains, establishing technical founda
tions for multi-departmental collaboration and cross-sectoral gover
nance (Goodchild and Li, 2021; Ye et al., 2025b). Similar calls for 
methodological standardization and improved study design have been 
emphasized in environmental monitoring contexts, where inconsistent 
protocols hinder cross-study comparability and limit the broader utility 
of collected data (Martins et al., 2023). Decision-makers should also 
actively explore new models of participatory planning and public 
empowerment, promoting bottom-up risk consensus building and 
collaborative governance to enhance social resilience (Evans et al., 
2016). Realizing the full potential of these advanced paradigms requires 
coordinated investment in open data sharing, benchmark dataset 
development spanning diverse urban contexts, and reproducible model 
implementations that facilitate systematic comparison of methods 
across different cities and climatic conditions. Sustainability issues, 
including ethical responsibility, privacy protection, and carbon foot
prints in AI governance, should also receive high attention, collectively 
promoting the construction of inclusive, equitable, and green intelligent 
heat governance systems (Vinuesa et al., 2020).

5.3. Limitations of this review

This review has certain limitations, and future research can be 
further improved and expanded in terms of diversifying literature types, 
in-depth analysis of model mechanisms, and AI ethical and moral 
assessment. First, the literature search and screening process mainly 
relied on English databases and mainstream international journals, 
which may have missed some unpublished works, regional journals, or 
non-English literature, resulting in certain language and regional biases 
in research coverage. Additionally, due to the high heterogeneity among 
different studies in terms of model methods, data types, spatial scales, 
and evaluation metrics, this paper faces difficulties in conducting in- 
depth comparisons and quantitative assessments of all technical de
tails and specific cases during the synthesis and summarization process. 
Finally, although the focus of this paper is not to deeply explore the 
ethical risks and data privacy protection of AI models, social governance 
issues such as fairness and sustainability should still receive more 
attention.

6. Conclusions

This study conducted a comprehensive analysis of the application of 

artificial intelligence (AI) in urban extreme heat research through a 
systematic literature review methodology. Following the PRISMA 
guidelines, we conducted searches in the Scopus database and ulti
mately included 102 high-quality publications. Based on systematic 
analysis, we constructed a comprehensive framework for AI-enabled 
urban extreme heat governance, categorizing applications into four 
components: prediction and early warning, monitoring and assessment, 
mitigation and adaptation, and scenario simulation and decision sup
port. We documented the basic information, data characteristics, tech
nical methods, and application scenarios of the research.

The results indicate that AI technologies demonstrate significant 
advantages across all components. In prediction and early warning, 
models such as Random Forest and XGBoost are suitable for short-term 
forecasting due to their efficiency and interpretability, while CNN and 
LSTM show greater advantages in complex spatiotemporal features and 
high-resolution prediction. Hybrid modeling further enhances accuracy 
and generalizability. In monitoring and assessment, AI has overcome the 
spatiotemporal limitations of traditional remote sensing, achieving a 
transition from static characterization to dynamic heat-population risk 
identification, and capturing residents' subjective perceptions through 
social media data. In mitigation and adaptation, AI identifies optimal 
thresholds for green-blue infrastructure, promotes urban morphological 
factor regulation, and generative AI also provides new pathways for 
adaptive design. In scenario simulation and decision support, digital 
twins and interactive platforms cover strategic planning and operations, 
promoting the integration of professional and public engagement. 
However, applications still face challenges, including the balance be
tween accuracy and efficiency, multi-source data fusion, insufficient 
causal inference, implementation barriers, and a lack of comprehensive 
system modeling capabilities.

Future research should focus on constructing a more comprehensive, 
intelligent, and sustainable AI-driven urban heat governance system. 
The primary task is to establish a comprehensive data framework that 
integrates physical environmental and multi-dimensional social infor
mation. Through deepening the integration of AI with meteorological 
physical models and introducing uncertainty quantification, we can 
achieve a transition from macroscopic thermal effect simulation to fine- 
grained risk prediction. At the technical level, we need to promote a 
paradigm shift toward causal inference, multi-objective optimization, 
and generative design, exploring innovative cooling design solutions. 
More critically, we must construct a systematic AI framework that links 
multi-stage risk management processes, forming a complete closed loop 
from risk identification to intelligent response. This development di
rection is highly aligned with the United Nations Sustainable Develop
ment Goals of Good Health and Well-being (SDG 3), Sustainable Cities 
and Communities (SDG 11), and Climate Action (SDG 13).
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Fig. A1. Data types.

Fig. A2. Time span types.
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Fig. A3. Code availability.

Appendix B. Supplementary data

Supplementary material to this article can be found online at https://doi.org/10.1016/j.eiar.2026.108363.

Data availability

Data will be made available on request.

References

Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, M., 
Fieguth, P., Cao, X., Khosravi, A., Acharya, U.R., Makarenkov, V., Nahavandi, S., 
2021. A review of uncertainty quantification in deep learning: techniques, 
applications and challenges. Inf. Fusion 76, 243–297. https://doi.org/10.1016/j. 
inffus.2021.05.008.

Amnuaylojaroen, T., 2025. Intensification of heat extremes in Southeast Asia: 
spatial–temporal analysis of temperature trends and heat events (1940–2023). Int. J. 
Climatol. 45, e8907. https://doi.org/10.1002/joc.8907.

Ashwini, K., Sil, B.S., Kafy, A.A., Altuwaijri, H.A., Nath, H., Rahaman, Z.A., 2024. 
Harnessing machine learning algorithms to model the association between land use/ 
land cover change and heatwave dynamics for enhanced environmental 
management. Land 13, 1273. https://doi.org/10.3390/land13081273.

Aydin, E.E., Ortner, F.P., Peng, S., Yenardi, A., Chen, Z., Tay, J.Z., 2024. Climate- 
responsive urban planning through generative models: sensitivity analysis of urban 
planning and design parameters for urban heat island in Singapore’s residential 
settlements. Sustain. Cities Soc. 114, 105779. https://doi.org/10.1016/j. 
scs.2024.105779.

Batty, M., 2018. Digital twins. Environ. Plan. B: Urban Anal. City Sci. 45, 817–820. 
https://doi.org/10.1177/2399808318796416.

Bettencourt, L.M.A., 2021. Introduction to Urban Science: Evidence and Theory of Cities 
as Complex Systems. MIT Press.

Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q., 2023. Accurate medium-range global 
weather forecasting with 3D neural networks. Nature 619, 533–538. https://doi. 
org/10.1038/s41586-023-06185-3.

Brelsford, C., Jones, A., Pandey, B., Vahmani, P., Allen-Dumas, M., Rastogi, D., 
Sparks, K., Bukovsky, M., Dronova, I., Hong, T., Iwaniec, D.M., Newcomer, M.E., 
Reid, S.C., Zheng, Z., 2024. Cities are concentrators of complex, MultiSectoral 
interactions within the human-earth system. Earth’s. Future 12, e2024EF004481. 
https://doi.org/10.1029/2024EF004481.

Briegel, F., Makansi, O., Brox, T., Matzarakis, A., Christen, A., 2023. Modelling long-term 
thermal comfort conditions in urban environments using a deep convolutional 
encoder-decoder as a computational shortcut. Urban Clim. 47, 101359. https://doi. 
org/10.1016/j.uclim.2022.101359.

Briegel, F., Wehrle, J., Schindler, D., Christen, A., 2024. High-resolution multi-scaling of 
outdoor human thermal comfort and its intra-urban variability based on machine 
learning. Geosci. Model Dev. 17, 1667–1688. https://doi.org/10.5194/gmd-17- 
1667-2024.
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