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Against the backdrop of global warming and rapid urbanization, urban extreme heat is becoming increasingly
severe, with profound impacts on public health, infrastructure, and social equity. Advances in artificial intelli-
gence (AI) offer new opportunities to address this challenge. This systematic review examines 102 publications
on Al applications in urban extreme heat governance. The findings reveal a “Northern bias,” with most studies in
the United States, China, and Europe, while gaps exist in sub-Saharan Africa and Latin America. Supervised
learning dominates current approaches. Al demonstrates effectiveness across four dimensions of governance. In
prediction and early warning, random forests and XGBoost are suitable for short-term forecasting, CNNs and
LSTMs excel at spatiotemporal patterns, and hybrid models improve accuracy. In monitoring and assessment, Al
overcomes spatiotemporal limits of remote sensing, shifting from static heat mapping to dynamic
heat—population risk identification, with social media capturing residents' perceptions. In mitigation and adap-
tation, Al identifies thresholds of green-blue infrastructure, supports urban form regulation, and expands
climate-adaptive design through generative Al In scenario simulation and decision support, Al-powered digital
twins and interactive platforms integrate planning and operations, fostering expert-public collaboration. Yet
applications remain constrained by trade-offs between accuracy and efficiency, limited data integration, and
insufficient causal inference, particularly in modeling the heat risk chain as a multi-stage system. Future work
should build data frameworks integrating physical and social information and advance paradigm shifts toward
causal inference and multi-objective optimization. A systematic AI framework can enable closed-loop governance
from risk identification to intelligent response.

1. Introduction

The trend of global warming has become increasingly pronounced.
Broadly speaking, any high-temperature phenomena that significantly
impact human health, infrastructure, or ecosystems (including heat
waves, urban heat islands, heat exposure, and human thermal stress) can
be considered “extreme heat,” with their frequency, duration, and in-
tensity showing significant upward trends over the past decades (Esper
et al., 2024). The rapid urbanization process has further amplified this
risk, not only exposing more populations to heat threats but also
intensifying local thermal environments through urban heat island ef-
fects (Q. Cheng et al., 2023a; Yang et al., 2017). This compounding ef-
fect not only exacerbates urban residents' heat exposure levels but also
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profoundly impacts public health (Laaidi et al., 2012), energy systems
(L. Jiang et al., 2024a), economic productivity (Fatima et al., 2023), and
social equity (Slesinski et al., 2025). The sharp rise in excess mortality
during heat waves, grid pressure from surging air conditioning loads,
infrastructure failures due to overheating, and disproportionate impacts
on vulnerable groups all indicate that urban heat has become a pressing
urban environmental challenge requiring global attention (Simpson
et al., 2024; Fang et al., 2025).

Urban heat phenomena exhibit highly complex systemic character-
istics, posing challenges to traditional research methods (Hochrainer-
Stigler et al., 2023; Simpson et al., 2021). From a spatial dimension,
urban heat displays significant multi-scale heterogeneous characteris-
tics, from building and neighborhood-scale local microclimates to city-
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wide and regional temperature patterns, with each scale presenting
unique thermal environment characteristics and variation patterns (Ye
and Yang, 2025). From a temporal dimension, urban heat exhibits
complex dynamic change patterns, including diurnal cycles, seasonal
fluctuations, and interannual variations (Amnuaylojaroen, 2025; Wang
et al., 2024). This spatiotemporal complexity makes accurate prediction
and assessment of urban heat extremely difficult. More complex still,
urban heat is controlled by the coupling of various natural and
anthropogenic factors, including urban morphological characteristics,
land use types, transportation and industrial activity intensity, and en-
ergy use patterns (Brelsford et al., 2024). The intricate interactions
among these factors make comprehensive understanding and precise
modeling of urban heat phenomena a significant challenge.

Traditional statistical methods and numerical climate models have
obvious limitations in addressing the above complexity. Traditional
statistical methods struggle to handle high-dimensional nonlinear re-
lationships, while numerical climate models suffer from high compu-
tational costs and limited resolution (H.-C. Zhu et al., 2024a). In recent
years, the rapid development of artificial intelligence technology (this
paper focuses primarily on AI dominated by machine learning and deep
learning) has provided opportunities to address these challenges.
Advanced methods such as machine learning and deep learning possess
powerful capabilities for processing large-scale, multi-source heteroge-
neous data, effectively integrating multidimensional information sour-
ces including ground monitoring networks, satellite remote sensing
imagery, street view data, and building morphology databases,
achieving precise modeling of complex nonlinear relationships, and
significantly improving prediction accuracy and computational effi-
ciency across multiple spatiotemporal scales (Osth et al., 2025; Rui et al.,
2025). In the field of urban heat research, Al technology has been widely
applied to various core tasks, including high-resolution land surface
temperature or air temperature retrieval, analysis of urban heat island
spatiotemporal evolution patterns, prediction of heat wave occurrence
and intensity, heat exposure risk assessment, and climate adaptation-
oriented urban planning scenario simulation and optimization (Briegel
et al., 2023; Fujiwara et al., 2024; Gong et al., 2025).

Although existing review literature has explored Al applications in
urban thermal environment research, significant knowledge gaps
remain in the research scope and methodological frameworks. On one
hand, most existing reviews focus on specific phenomena within urban
heat, particularly urban heat island effects, while neglecting the inte-
gration of heat wave prediction, exposure assessment, and adaptive
design. For example, Ghorbany et al. (2024) reviewed methodological
evolution and machine learning applications in urban heat island
research, noting that the integration of machine learning significantly
expanded capabilities for complex prediction and analysis, but their
research context was limited to urban heat island phenomena. In
contrast, our review encompasses the full spectrum of urban extreme
heat issues, including heat waves, heat exposure, and thermal stress,
providing a more comprehensive perspective on Al applications. For
instance, Castro and Delina (2025) reviewed research progress in policy-
making combined with AI technology for addressing extreme heat, but
focused on policy aspects and stakeholder response strategies, with
insufficient elaboration on AI methods' technical details. Similarly,
Camps-Valls et al. (2025) reviewed Al applications in analyzing various
extreme climate events, including floods, droughts, wildfires, and heat
waves, emphasizing the importance of building accurate, transparent,
and reliable AI models, but lacking in-depth analysis specific to the
urban heat domain. Unlike these prior reviews, our study uniquely in-
tegrates a four-component governance framework that systematically
connects forecasting, monitoring, mitigation, and decision support,
enabling a holistic understanding of AlI's role across the entire heat risk
management chain.

Comprehensively, current Al-enabled urban heat research shows
obvious deficiencies in systematic application frameworks, methodo-
logical system integration, and practical guidance, particularly lacking
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holistic modeling of heat risk chains as multi-stage dynamic feedback
systems. Existing research often focuses on specific tasks or single con-
texts, such as improving heat wave prediction accuracy or identifying
spatial distributions of heat exposure, lacking collaborative analysis and
holistic thinking across different stages, including prediction, assess-
ment, adaptation, and decision-making, and has not fully leveraged Al
technology's cross-stage collaborative empowerment potential. Based on
this, this review aims to systematically address the shortcomings in
existing research. The main contributions of this study are as follows:

e We construct a comprehensive four-component framework (fore-
casting and early warning, monitoring and assessment, mitigation
and adaptation, scenario simulation and decision support) for Al
applications in urban extreme heat governance.

e We systematically review 102 publications to document diverse Al
methods and identify technical challenges and practical barriers.

e We reveal the “Northern bias” in existing research and highlight
knowledge gaps in sub-Saharan Africa and Latin America.

e We propose future directions emphasizing causal inference, multi-
objective optimization, and integrated physical-social data
frameworks.

Through systematic review and critical analysis, this study provides
guidance for Al-driven urban heat research, promoting climate-resilient
city construction.

2. Methodology

This study employs a systematic literature review methodology to
explore the topic of “artificial intelligence applications in urban extreme
heat research,” systematically analyzing the current status, technical
challenges, and future development directions of Al technology appli-
cations in urban heat forecasting and early warning, monitoring and
assessment, mitigation and adaptation, and scenario simulation and
decision support. The review process follows the PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses) guidelines
to ensure systematicity, transparency, and reproducibility (Page et al.,
2021). Based on in-depth analysis of existing literature, we constructed a
comprehensive framework for Al-enabled urban extreme heat
management.

2.1. Literature search and screening

A comprehensive search was conducted in the Scopus database for
English-language peer-reviewed articles and conference papers pub-
lished from January 2020 to April 21, 2025. The year 2020 was selected
as the starting point based on the rapid development and application of
deep learning technologies in climate and urban research domains
during this period.

The search strategy was structured around three intersecting themes:
(1) artificial intelligence methods, (2) urban extreme heat, and (3)
application scenarios. The final search query was formulated as: TITLE-
ABS-KEY((“deep learning” OR “AI” OR “artificial intelligence”) AND
(“urban heat*” OR “extreme heat” OR “heat wave” OR “urban heat is-
land”) AND (predict* OR forecast* OR adapt* OR assess*)) AND PUB-
YEAR >2019 AND PUBYEAR <2026 AND LANGUAGE(english) AND
(DOCTYPE(ar) OR DOCTYPE(cp)) AND (LIMIT-TO (SUBJAREA,”SOCI”)
OR LIMIT-TO (SUBJAREA,”ENVI”) OR LIMIT-TO (SUBJAREA,”EART”)).

To ensure high quality and relevance of included literature, rigorous
inclusion and exclusion criteria were established. Inclusion criteria
comprised: (1) peer-reviewed articles published in SCI/SSCI-indexed
journals or high-quality international conferences; (2) empirical
studies explicitly applying Al techniques to address urban heat-related
problems; (3) research focusing on extreme heat phenomena at urban
or metropolitan scales; (4) studies providing clear methodological de-
scriptions and validation results; (5) articles written in English.
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Exclusion criteria included: (1) purely theoretical studies or review ar-
ticles (although relevant reviews were used for supplementary refer-
ence); (2) non-peer-reviewed literature (technical reports, preprints,
conference abstracts, etc.); (3) studies with scope limited to indoor en-
vironments or non-urban areas; (4) research employing only traditional
statistical methods without Al technology involvement; (5) articles with
insufficient data availability or inadequate methodological descriptions.

Records identified (n = 145)

« Database: Scopus

Timeframe: Jan 2020 - Apr 2025

* Document types: articles and confer-
ence papers (English)

Identification
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2.2. Literature screening and quality assessment

The initial search yielded 145 publications. After removing duplicate
entries using EndNote software, we conducted preliminary screening of
titles and abstracts of the remaining literature, excluding 27 publica-
tions that clearly did not meet the inclusion criteria. Subsequently, we
assessed the quality of these articles using the Critical Appraisal Skills
Programme (CASP) checklist (Supplementary Note S1), a standardized
tool for evaluating the rigor and reliability of systematic review studies

Search query and de-duplication

* Search query string (1) Al: (“deep learning” OR
“Al”...) AND (2) Heat: (“‘urban heat*” OR
“extreme heat”...) AND (3) Task: (predict* OR
forecast* OR adapt*...)

* Duplicate records removed (EndNote): n = 0

Records selected for screening
(n = 145)
g
= Bibliometric mapping (VOSviewer .
= for keyword anzpclugst(er oveNiew) Records excluded after Title and Abstract
g (Scopus metadata) screening (n = 27)
(7] * Not urban extreme heat related
* No explicit Al methods
* Indoor-only or non-urban scope
Eligible articles for full-text review » Insufficient relevance to forecasting, monitor-
(n=118) ing, mitigation and decision support
e ] N
Quality assessment
(n=118)
Quality assessment tool: Critical Appraisal
Skills Programme (CASP) checklist
«  Clarity of research objectives
g * Appropriateness of study design
= « Data source description and quality
8 * Al method appropriateness
8 & Mocllel ;(alldatlon and performance Full-text articles excluded (n = 16)
evaluation ) i
+  Transparency of results reporting *  Review of conceptual-only articles
- Discussion of limitations « Traditional statistics only (no Al)
« Relevance to urban extreme heat * Inadequate methodological detail or validation
governance < + Insufficient transparency for appraisal
» CASP score below inclusion threshold (<10
L Inclusion threshold:10/16 points (62.5%) . points)
- 2z . : s
Eligible articles for in-depth synthesis (n = 102)
» * How is Al used for urban extreme heat prediction and early warning?
g‘ *  What multimodal data sources and fusion strategies support heat monitoring and assessment?
g * How do Al methods inform heat mitigation and adaptation planning at urban scale?
< * How are scenario simulation and decision support systems implemented for heat risk management?
+  What technical challenges (data, uncertainty, transferability, interpretability) and future directions emerge?

Fig. 1. PRISMA flow diagram illustrating the systematic literature screening and selection process.
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(Long et al., 2020). The final quality assessment resulted in a core
dataset of 102 publications suitable for in-depth analysis. The complete
flow diagram illustrating the systematic literature screening and selec-
tion process is presented in Fig. 1.

2.3. Data extraction and analytical framework

We employed a structured data extraction method, systematically
recording key information from each study, including: (1) basic research
information: publication year, study area, spatial scale; (2) data char-
acteristics: data source types, temporal span, spatial resolution; (3)
technical methods: Al model types, algorithm architecture, performance
evaluation metrics; (4) application scenarios: specific task types, core
problems addressed, practical application effects.

Based on in-depth analysis of existing research, we constructed the
comprehensive framework for Al-enabled urban extreme heat manage-
ment as shown in Fig. 2. This framework is based on multimodal data
fusion, integrating multi-source information including meteorological
observations, satellite remote sensing, reanalysis data, and socioeco-
nomic data; supported by diverse Al models as core technical infra-
structure, encompassing methodological systems including supervised
learning, unsupervised learning, semi-supervised learning, and special-
ized Al; and centered around the complete process of urban heat risk
management, categorizing Al applications into four key components:
forecasting and early warning (achieving spatiotemporal prediction and
proactive response), monitoring and assessment (supporting high-
resolution mapping and comprehensive risk assessment), mitigation
and adaptation (optimizing intervention effects and generating inno-
vative designs), and scenario simulation and decision support (simu-
lating future scenarios and promoting interactive governance). This
framework provides an analytical framework for systematically
reviewing current Al applications in urban heat research and establishes
a foundation for identifying research gaps and exploring future research
directions.

3. Overview of selected literature
3.1. Spatial distribution

To assess the geographical coverage of existing research, we con-
ducted a visualization analysis of the study locations in the included

Forecasting and Early
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literature. As shown in Fig. 3 (left), the site selection in existing litera-
ture exhibits a pronounced “northern bias” pattern: most research sites
are densely distributed in economically and scientifically advanced
countries in the mid-latitudes of the Northern Hemisphere, particularly
concentrated along the east and west coasts of the United States and the
Great Lakes region, as well as in Western and Central Europe. However,
when using the “Brandt Line” as a reference, we observe a characteristic
pattern in the Global South of point-based clustering coexisting with
large areas of sparsity: the southern coastal regions of China and the
Indian subcontinent, despite being located south of the line, still
concentrate a substantial number of sample sites, constituting the most
active research hotspots within the Global South. In contrast, sub-
Saharan Africa, inland Latin America, and Pacific island nations are
virtually uncovered, creating extensive knowledge gaps.

The treemap in Fig. 3 (right) further quantifies this concentration,
with numbers representing the total count of urban study locations
involved in each country within the reviewed literature. Asia contrib-
utes more than half, with China alone accounting for 293 entries, rep-
resenting over a quarter of the total sample; India, South Korea, Japan,
and several Southeast Asian countries form the secondary tier. North
America is absolutely dominated by the United States (210 entries), with
Canada contributing only a minor portion. Europe displays a multipolar
pattern, with research powerhouses including France, Germany, Italy,
the United Kingdom, and Russia each forming medium-scale modules.
Oceania relies almost entirely on Australia, while South America and
Africa contribute only sporadically. This reveals that the current
research landscape not only exhibits a North-South divide but also
demonstrates regional polarization within the Global South. Future ef-
forts urgently need to strengthen data collection and cross-regional
collaboration in underrepresented regions to enhance the global appli-
cability and contextual diversity of research.

3.2. Word cloud

Fig. 4 presents a word cloud visualization of keywords from the
reviewed literature. “Urban,” “heat,” “machine learning,” “tempera-
ture,” “urban heat island,” and “climate change” constitute the largest
visual weights, indicating that mechanistic research and intelligent
prediction of urban heat exposure in the context of climate change
represent the current focal points of academic attention. The co-
occurring terms “adaptation,” “heatwave,” “resilience,” and

Al Applications

Monitoring and

Multimodal Data Warning Assessment
W' + Meteorological observation data «  Spatio-temporal Forecasting - High-resolution Mapping
"@ « Satellite remote sensing images
* Reanalysis data « Complex Pattern Recognition + Quantifying Population Exposure
« Socioeconomic data |

« Proactive Response

Integrated Risk Assessment

(===
|
E’e
Scenario Simulation S~ Mitigation and
Al Models and Decision Support %\ Adaptation
~
o5e |+ Supervised Learning « Simulating Future Scenarios +  Optimizing Intervention Effects
342/ + Unsupervised Learning
+ Semi-supervised Learning « Enabling Dynamic Management « Generative Urban Design
« Specialized Al
« Facilitating Interactive Governance « Informing Strategic Planning

Fig. 2. Integrated framework for AI applications in urban extreme heat management.
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“vulnerability” reveal that research not only focuses on the thermal
environment itself but also emphasizes interdisciplinary exploration of
population vulnerability, resilience, and adaptive strategies.

From a methodological dimension, the simultaneous appearance of
terms such as “deep learning,” “neural network,” “regression,” “random
forest,” “xgboost,” and “Istm” reflects the coexistence and integration of
traditional statistical regression with diverse machine learning models.
Terms like “data,” “analysis,” “model,” “prediction,” and “simulation”
suggest that data-driven prediction-simulation frameworks constitute
the technical mainline of research. Spatial information technology
characteristics are also prominently featured: keywords including
“remote sensing,” “spatial,” “geospatial,” “land surface,” as well as
“surface temperature” and “spatial distribution” indicate that substan-
tial research relies on satellite or aerial remote sensing to acquire high-
resolution thermal environment data and employs spatial modeling to
analyze the heterogeneous patterns of urban heat islands.

At the application and practice level, the frequent occurrence of
“urban planning,” “green space,” “cooling,” “vegetation,” “green infra-
structure,” and “management” demonstrates that urban planning and
green infrastructure are emerging as key pathways for mitigating and
adapting to extreme heat. Terms such as “public health,” “health risk,”
“mortality,” and “heat exposure” emphasize the direct impacts of heat
risk on health, highlighting the close integration between scientific
research and public health strategies. Overall, this word cloud reveals an
interdisciplinary, multi-scale research landscape: employing artificial
intelligence as the core methodology, integrating climate science, urban
planning, public health, and remote sensing geographic information

” ” .

systems to achieve monitoring, prediction, assessment, and adaptive
management of urban extreme heat risks.

3.3. Data and AI models

3.3.1. Data sources and types

Fig. 5 illustrates the primary data sources for Al applications in urban
extreme heat research and their relationship with the geographical lo-
cations of study areas. From the perspective of data source composition,
National Meteorological Services and Satellite Remote Sensing consti-
tute the most dominant data sources. Academic Research Institutions
and Open-Access Databases also provide substantial preprocessed,
quality-controlled secondary datasets, thereby reducing the barriers to
data preparation. Some studies further integrate data from Commercial
Platforms, Public Health Organizations, and International Agencies.
Although these represent a relatively small proportion, they demon-
strate an expansion toward multidimensional, comprehensive research
that incorporates socioeconomic activities and public health impacts.

Different regions also exhibit distinct patterns of data dependency.
Urban research in China primarily relies on official meteorological and
remote sensing data, emphasizing high-resolution observational data.
Research in the United States, while also depending on meteorological
and remote sensing data, shows a greater tendency to utilize academic
institutions and open databases, reflecting the diversity of data sources.
Europe demonstrates a balanced integration of multiple data types,
emphasizing multi-source data integration and analysis.

Fig. Al illustrates that beyond reliance on meteorological and remote
sensing data, studies increasingly address social vulnerability, health
risks, and the coupling of urban spatial and environmental pressures. It
is worth noting that the data fusion approaches employed in the
reviewed studies predominantly rely on feature-level concatenation, late
fusion, and simple ensemble strategies. More advanced fusion tech-
niques, such as variational data assimilation methods that enforce
physical consistency, graph-based fusion models that capture complex
spatial dependencies, and knowledge-graph-supported integration that
enables semantic interoperability across heterogeneous sources, remain
largely underexplored in the current literature despite their demon-
strated potential in related domains. Fig. A2 and Fig. A3 illustrate the
types of data spans used in the reviewed studies and the availability of
code, respectively.

3.3.2. Al models

Fig. 6 presents the distribution of Al methods and models applied in
urban extreme heat research. Overall, supervised learning represents the
most widely applied paradigm in this field, with traditional machine
learning and deep learning constituting the two dominant branches
within this category. Traditional machine learning models, such as



J. Rui et al. Envir [ Impact A Review 119 (2026) 108363

[ Africa

== South America

.o“.m B

North America

l Europe Public Health Organizati

International Agencies ==

Learning Paradigms letho egories Specific Al Models

Graph-based Methods

~ mmm Hybrid Approaches

[ sem-supervised Loarming
[ Physics-informed Al

-Oplﬁohmwll.nmlng Autoenc
' == Graph Convolutional Network ==
Graph Attention Network
GraphSAGE
Graph Neural Network
\ NN\ Semi-supervised CNN ——
A \ NN Co-training
AN "\ 5 Self-training
Physics-informed Neural Network
Neural Ordinary Differential Equation
Physics-guided Machine Learning -~

[ Transfer & Meta Learning

Differentiable Programming

nm' ™

] 3D CNN =

Spatiotemporal Graph NN ——

Color Legend: Recurent Neurar Network: —

© Supervised Learning Transfer Learning ~

e Unsupervised Learning . Domain Adaptation
e Semi-supervised Learning Few-shot Learning
® Specialized Al ~Meta-learning

Fig. 6. Al method framework and model distribution in urban extreme heat research.



J. Rui et al.

Random Forest, Support Vector Machine, and XGBoost, maintain a
central position in fundamental tasks, including heat risk assessment
and driving factor attribution, due to their robustness in handling
limited datasets, superior interpretability, and computational efficiency.
Deep learning methods are predominantly represented by Convolutional
Neural Networks (CNN), Long Short-Term Memory networks (LSTM),
ResNet, and U-Net. These models can automatically extract multi-scale,
high-dimensional spatial and temporal features from data, making them
widely applicable in scenarios such as high-resolution thermal field
reconstruction, spatiotemporal sequence prediction, and remote sensing
image interpretation. Ensemble learning (including Bagging, Boosting,
and Stacking) serves as an effective performance enhancement strategy
that further improves the generalization capability and robustness of
prediction results by integrating the advantages of multiple models.

Unsupervised learning also provides powerful tools for exploring
intrinsic data structures, primarily encompassing clustering, dimen-
sionality reduction, and generative models. For instance, methods such
as K-means and t-SNE facilitate automatic discovery of latent patterns
from large-scale data, providing technical support for tasks including
urban functional zone identification and heat island heterogeneity
analysis. Generative Adversarial Networks (GANs) and similar models
demonstrate potential in data augmentation and scenario simulation. In
recent years, to address the challenges of limited labeled data and
complex relationships, the application of semi-supervised learning has
rapidly developed, particularly models represented by Graph Neural
Networks (GCN, GAT, GraphSAGE, etc.), which can effectively model
spatial neighborhood relationships and complex network structures,
supporting fine-grained characterization of interactions between urban
thermal environments and human activities.

Notably, a series of specialized Al methods, deeply integrated with
domain-specific problems, are emerging as new research hotspots.
Physics-informed Al (such as Physics-informed Neural Networks and
Physics-guided Machine Learning) combines physical processes with
data-driven approaches, enhancing model generalizability and inter-
pretability. Specifically, these methods embed governing equations such
as heat transfer and energy balance constraints as soft constraints in the
loss function, enabling models to learn physically consistent represen-
tations even with limited training data and to generalize more reliably to
unseen climate scenarios. Spatiotemporal learning frameworks,
including ConvLSTM and spatial-temporal graph convolutional net-
works, jointly model the evolution of thermal patterns across space and
time, capturing coupled dynamics that conventional approaches cannot
represent. Transfer learning enables models pretrained on data-rich
cities to be fine-tuned for data-scarce contexts, while meta-learning
trains models to rapidly adapt to new urban environments with mini-
mal examples, directly addressing the Northern bias by providing
pathways to leverage existing research for global benefit.

4. AI applications in urban extreme heat research

This section will review the current state of Al technology applica-
tions in urban extreme heat governance based on the included literature.
The content will be organized around four key components: forecasting
and early warning, monitoring and assessment, mitigation and adapta-
tion, and scenario simulation and decision support. The analysis will
focus on the technical characteristics of different methods and their
applicable contexts, while exploring pathways and the practical effec-
tiveness of Al-enabled urban thermal resilience enhancement.

4.1. Forecasting and early warning

Forecasting and early warning refer to the advanced identification of
extreme heat events' occurrence timing, intensity, and affected areas by
leveraging multi-source data, including meteorological, remote sensing,
urban morphological, and social dynamic data, and the timely trans-
mission of risk information to governments and the public through
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tiered warning mechanisms (Hajat et al., 2010). Against the backdrop of
escalating urban extreme heat risks, AI technology has become a core
technical approach for establishing efficient urban extreme heat warn-
ing systems and enhancing urban climate adaptation capacity, owing to
its advantages in multi-source data fusion, complex pattern recognition,
and real-time dynamic prediction. Current fusion practices primarily
involve feature stacking and model ensembling, while emerging ap-
proaches such as physics-informed data assimilation, spatiotemporal
graph neural networks, and attention-based cross-modal fusion offer
promising directions for improving prediction consistency across het-
erogeneous data sources (Bi et al., 2023; Lopez-Gomez et al., 2023).
Related research exhibits distinct methodological differences in
modeling approaches, primarily including modeling methods based on
traditional machine learning and explainability techniques, complex
feature learning prediction mechanisms based on deep learning, and
hybrid modeling frameworks that integrate the advantages of different
models to achieve spatiotemporal collaborative prediction (Krishnaraj
et al., 2025; Rashtian et al., 2025; Shen et al., 2024). These methods not
only demonstrate different characteristics in prediction accuracy and
generalization capability but also show differences in functional
emphasis, collectively expanding the applicable scenarios and response
timeliness of urban heat warning systems.

Methods represented by traditional machine learning models are
widely adopted in heat prediction due to their high modeling efficiency
and strong feature interpretability, primarily applied in short-term
urban heat prediction tasks with low data dimensionality or requiring
strong interpretability. Algorithms such as Random Forest (RF), Light
Gradient Boosting Model (LGBM), Extreme Gradient Boosting
(XGBoost), and CatBoost demonstrate good robustness when processing
multidimensional static and dynamic variables, while requiring modest
computational resources and moderate labeled datasets, making them
feasible for real time applications in resource constrained settings
(Chongtaku et al., 2024; Oliveira et al., 2022; Rashtian et al., 2025; Shen
et al., 2024; Varentsov et al., 2023). Research typically uses ground
observation data, remote sensing temperature data, urban surface and
morphological factors as input features to predict target temperature
variables such as land surface temperature, 2-m air temperature ex-
tremes, or urban heat island intensity. RF was used in one study to
downsample numerical weather prediction (NWP) data, successfully
improving temperature prediction accuracy from 2.5 km to 250 m,
achieving effective identification of local heat hotspots during high-
temperature periods and significantly enhancing warning precision at
the urban level (Oliveira et al., 2022). Additionally, these models often
combine with explainability tools such as SHAP to analyze the marginal
contributions and influence mechanisms of variables like vegetation
coverage and building density on prediction results, providing decision
support for spatial heterogeneity identification and intervention strate-
gies (Lee et al., 2024; Shen et al., 2024).

Compared to machine learning models, deep learning models play an
important role in urban heat risk prediction with their stronger
nonlinear modeling capabilities and high-dimensional feature learning
advantages. Particularly when processing high-frequency time series
data and high-resolution image data, deep neural networks possess
obvious performance advantages. Convolutional Neural Networks
(CNN) are widely used to extract spatial features from remote sensing
images, supporting the identification of high-risk areas from urban-scale
LST images or downsampling reanalysis data to fine-scale block-level
heat exposure maps (Johannsen et al., 2024). Temporal models such as
Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU) are
suitable for processing hourly to daily-scale air temperature and heat-
wave trend prediction tasks, though they require substantial labeled
data and GPU-accelerated infrastructure, offering superior accuracy
when sufficiently high-resolution dense data are available (Qureshi
et al., 2025; Krishnaraj et al., 2025; Tehrani et al., 2024; Zuccarini,
2024). For example, Krishnaraj et al. (2025) integrated LSTM into a
multi-technology fusion microclimate management system, utilizing its
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temporal modeling capability to accurately predict environmental var-
iables such as temperature and humidity, and combined with IoT data
collection and blockchain secure transmission to construct an intelligent
environmental control framework with real-time response.

As urban data structures become increasingly complex, more
research is beginning to explore fusion methods of multiple Al models,
forming ensemble modeling systems. Beyond model ensembling, hybrid
approaches that couple data-driven Al with process-based physical
models are emerging, where numerical weather prediction outputs serve
as physics-based constraints or initial conditions for machine learning
refinement, enabling the preservation of physical consistency while
leveraging Al capabilities for bias correction and downscaling. These
models typically embed different types of models through multi-module
collaborative approaches, fully utilizing their respective advantages to
enhance overall prediction capability, particularly suitable for con-
structing urban warning systems under multi-source heterogeneous data
scenarios. Mukarram et al. (2025) hybridized traditional ML with deep
learning, using LSTM to capture trends and cyclical components in
temperature time series, then feeding its output as input to XGBoost for
final prediction, achieving dual representation of spatial and temporal
features. Other research adopts functional division-based hybrid
frameworks of multiple deep learning models: a U-Net and ConvLSTM
hybrid modeling framework was used to predict marine heatwave in-
tensity and occurrence probability, respectively, in the South China Sea
region, achieving comprehensive prediction through dual-model
collaboration (Sun et al., 2023).

4.2. Monitoring and assessment

Monitoring and assessment aims to characterize spatiotemporal
patterns of thermal environments, quantify population exposure levels,
and determine comprehensive risks by integrating social vulnerability
through continuous observation and analysis, providing evidence to
support subsequent interventions (Reid et al., 2009; Yoo et al., 2023).
The application of Al in urban extreme heat monitoring and assessment
is progressively evolving from static “thermal environment character-
ization” toward dynamic “heat-population coupled risk identification.”
Core tasks primarily encompass thermal environment monitoring, heat
exposure identification, and heat health risk assessment, combined with
social vulnerability (Li et al., 2024; Ma et al., 2025). In terms of technical
approaches, while traditional statistical models are still applied in some
studies, machine learning and deep learning methods represented by RF
and U-Net have become the mainstream technical pathways. These
methods demonstrate significant advantages in enhancing spatial
monitoring accuracy, modeling complex nonlinear relationships, and
analyzing social-environmental interaction mechanisms, helping rele-
vant institutions effectively construct high-resolution heat risk moni-
toring systems.

In thermal environment monitoring and heat exposure identifica-
tion, Al technology has overcome the limitations of traditional remote
sensing in spatiotemporal continuity. Research combines models such as
RF and U-Net with multi-temporal Landsat or Sentinel thermal infrared
imagery, integrating ground observation data for inversion analysis to
achieve continuous spatial reconstruction of LST and urban heat island
intensity (Puttanapong et al., 2025; Shaamala et al., 2025). For example,
Puttanapong et al. (2025)’s study of the Bangkok metropolitan area
demonstrated that models including RF, GTB, and SVM exhibit excellent
performance in integrating remote sensing spectral indices with tem-
perature estimation, accurately capturing the contributions of different
urban surface types to heat island effects. Meanwhile, the U-Net model
showed extremely high efficiency in high-resolution urban heat map-
ping tasks in the Adelaide metropolitan area of South Australia,
completing entire image processing in less than 30 s while maintaining
stable prediction accuracy (Shaamala et al., 2025). Comparing these
approaches, traditional machine learning models such as RF and
XGBoost offer advantages in interpretability, lower computational costs,
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and robustness with smaller datasets, making them suitable for tabular
data analysis and feature importance identification, whereas deep
learning architectures like U-Net excel in processing high-dimensional
imagery data and capturing complex spatial patterns but require
larger training datasets and greater computational resources. Heat
exposure identification has further promoted the transition from tradi-
tional static indicators toward dynamic and refined approaches. Models
such as XGBoost, stacked ensemble learning, and geographically
weighted random forest are widely used to construct multidimensional
heat exposure assessment systems, achieving separate modeling of
daytime and nighttime exposure patterns by integrating dynamic pop-
ulation distribution, meteorological elements, and urban spatial envi-
ronmental characteristics (Erdem Okumus and Akay, 2025; Ma et al.,
2025; Yoo et al., 2023).

In heat health risk and social vulnerability assessment, Al models are
widely applied to identify impact mechanisms linking environmental
exposure with population sensitivity. One typical approach combines
thermal environment variables such as LST and SUHI with socioeco-
nomic data, employing interpretable machine learning or geospatial
explainable artificial intelligence models to identify key risk factors
affecting heat-related health outcomes. Foroutan et al. (2025) used
GeoShapley methods and SHAP value analysis to examine spatial het-
erogeneity between urban and rural areas, discovering significant dif-
ferences in high-temperature health risk factors between these two types
of regions, providing scientific evidence for regionalized public health
intervention strategies. Li et al. (2024) proposed the U-HEAT frame-
work, integrating multiple models, including support vector machines,
RF, and CNN, combined with remote sensing and geographic data for
classification modeling of urban heat vulnerability, achieving spatial
identification of heat-vulnerable populations. Building on this founda-
tion, some studies further introduce high-order spatial relationship
modeling approaches to enhance model capability in identifying com-
plex human-environment coupling patterns. A study based on Greater
London constructed a Multi-Hypergraph Neural Network (MHGNN)
framework, integrating street view images with geospatial multi-source
information, effectively capturing structural patterns of urban heat-
flood compound vulnerability by mining spatial proximity and high-
order dependencies of urban neighborhoods, demonstrating superior
performance in urban climate justice analysis (Liu et al., 2025).

Notably, some studies incorporate social media data into monitoring
and assessment systems to capture residents' subjective perceptions and
behavioral responses to extreme heat events. Natural language pro-
cessing technologies, particularly deep semantic models based on BERT
and RoBERTa, are used to extract sensitivity and emotional information
from microblog data. While both models demonstrate strong capabilities
in contextual understanding, BERT is more computationally efficient
and suitable for standard sentiment classification tasks, whereas RoB-
ERTa offers improved performance on nuanced semantic analysis
through its optimized pretraining strategy, though at the cost of
increased computational demands and data requirements. For example,
Zhi et al. (2021) utilized BERT to analyze urban residents' sensitivity
levels to heatwave events and linked this with land surface temperature
data obtained from remote sensing, revealing spatial heterogeneity
characteristics of heatwave sensitivity. Another study employed RoB-
ERTa models combined with hotspot analysis and Apriori association
rule mining methods to identify interaction mechanisms between
different urban functional zones and residents' emotional changes,
revealing the role of functional spatial structures in shaping emotional
health differences during heatwave periods (Y. Zhu et al., 2024b).

4.3. Mitigation and adaptation

Mitigation and adaptation, as core strategies for addressing urban
extreme heat, emphasize proactive responses to current and future
extreme heat impacts through adjustments to urban systems, infra-
structure, and management approaches, aiming to enhance urban
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thermal resilience and resident welfare (Kumar et al., 2024). In recent
years, Al applications have not only achieved precise identification of
cooling thresholds for green-blue infrastructure but also promoted fine-
tuned regulation of urban structural elements (Feng et al., 2024; Han,
2023). Simultaneously, the deep integration of generative Al with
climate models has opened new pathways for climate-adaptive urban
design, enabling dynamic assessment of different morphological impacts
on thermal environments and optimization of design solutions during
the planning phase (Zhou et al., 2025; Aydin et al., 2024; F. Jiang et al.,
2024b). Through multi-model collaboration based on machine learning,
deep learning, and evolutionary algorithms, Al has further enhanced the
capability to characterize cooling elements and their spatial heteroge-
neity, providing efficient and intelligent solutions for key aspects,
including urban planning, green infrastructure layout, and adaptive
strategy selection.

Al is widely applied to optimize the planning and design of blue-
green infrastructure to maximize its ecosystem service functions. At
the macro level, Al models can determine vegetation coverage thresh-
olds required to achieve maximum cooling benefits under different cli-
matic contexts. For example, one study utilized Boosted Regression
Trees (BRT) models, which balance predictive accuracy with interpret-
ability and computational efficiency, to precisely calculate that dry-hot
cities require ideal vegetation coverage of 30-40% through analysis of
urban two-dimensional and three-dimensional landscape indicators,
while humid-hot cities need as high as 60-80% to achieve optimal
cooling effects (Ren et al., 2024). In specific urban park design, Yang
et al. (2025) similarly employed BRT models to reveal that park area,
shape, edge density, and internal vegetation and water body proportions
are key variables affecting “cool island” intensity through analysis of
park landscape patterns along urban-rural gradients. To address
regional variations, researchers have also applied geographically
weighted random forest models, which, due to their advantages in
capturing spatial heterogeneity, can provide differentiated and refined
green space configuration recommendations based on specific condi-
tions of different urban functional zones such as commercial and in-
dustrial areas (Zhang et al., 2025). Al applications have been refined to
the individual tree level, where Das et al. (2022) combined geospatial
artificial intelligence with the deep learning model Faster R-CNN to
successfully achieve automatic identification and inventorying of urban
trees through analysis of high-resolution aerial images, thereby quan-
tifying the cooling contributions of specific tree species. For green roofs
as a specific mitigation measure, artificial neural networks (ANN) are
used to integrate LiIDAR and satellite imagery data to assess their cooling
potential under different building heights, sky view factors, and solar
radiation conditions, ultimately recommending priority implementation
on mid-rise buildings for optimal benefits (Kafy et al., 2024).

Researchers can also identify key heat mitigation factors in built
environments through Al and use this guidance for comprehensive
renovation of built-up areas and innovative design of future urban
forms. Various machine learning models are effectively used to analyze
complex nonlinear relationships between urban morphology and ther-
mal environments. Research employing Gradient Boosting Decision
Trees (GBDT) successfully identified that vegetation index (NDVI) and
green space proximity are important nonlinear factors affecting land
surface temperature (Kim, 2024). Similarly, ensemble learning models
are used to deconstruct multiple driving factors, clearly indicating that
morphological factors such as building density and floor area ratio
significantly exacerbate extreme heat, while green spaces and water
bodies provide crucial mitigation effects (Liu et al., 2024). Building on
this foundation, with the aid of explainable Al tools such as SHAP, re-
searchers can further quantify the specific weights of these urban design
elements on urban heat, helping urban planning departments formulate
more precise intervention strategies (Li et al., 2025). Furthermore, Al
technology is further applied to guide the comprehensive renovation of
built-up environments and innovative design of future urban forms.
Through analysis of Local Climate Zones (LCZ), Al evolutionary
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algorithms such as Genetic Algorithms (GA) and Particle Swarm Opti-
mization (PSO) can explore and optimize combinations and spatial
layouts of different LCZs to achieve the overall goal of mitigating heat
island effects (Mohamed and Zahidi, 2024). More forward-looking
research explores how to deeply integrate generative Al with climate
models to achieve innovative climate-adaptive urban design. Wang et al.
(2025) constructed a hybrid Generative Adversarial Network (GAN)
framework combining Pix2pix and CycleGAN, integrating morphology
generation with performance assessment to dynamically examine the
impacts of different urban designs on heat island intensity, achieving
climate-responsive optimization of urban forms during the early plan-
ning stage.

4.4. Scenario simulation and decision support

Scenario simulation and decision support refer to constructing urban
thermal environment evolution models under different development
scenarios, analyzing the potential effects of various intervention mea-
sures, and providing scientific decision-making evidence and tool sup-
port for policymakers, planners, and managers (D'Ambrosio et al., 2023;
Pan et al., 2024). In this field, Al applications are driving a trans-
formation of traditional urban management toward more forward-
looking, interactive, and scientific paradigms. AI not only provides
key insights for long-term strategic planning through complex scenario
simulations but also extends decision support to multiple levels,
including real-time operations and public participation through inno-
vative forms such as digital twins and interactive tools, significantly
enhancing the intelligence level of urban thermal environment gover-
nance (Elnabawi and Raveendran, 2024; Luo et al., 2025; Ye et al.,
2025a).

Scenario simulation represents one of the core applications of Al-
enabled strategic decision-making. By integrating multidimensional
data, including land use, climate change, and socioeconomic factors,
machine learning models can simulate and predict future thermal en-
vironments under different development pathways. Researchers have
successfully predicted the evolution trends of land surface temperature
and heat island intensity over the coming decades under different urban
expansion and land use change scenarios using models such as Artificial
Neural Networks (ANN) and Cellular Automata (CA) (Ashwini et al.,
2024). Additionally, Lan et al. (2023) combined Shared Socioeconomic
Pathways (SSPs) and Representative Concentration Pathways (RCPs) to
conduct spatially explicit predictions of urban heat island risks and
population exposure under different climate-socioeconomic policy
combinations through ANN models, helping decision-makers formulate
more effective macro-level climate adaptation policies.

Urban digital twins, as an advanced decision support platform, are
becoming an important vehicle for Al applications, offering advantages
over traditional scenario modeling approaches such as ANN-based
simulations in terms of real-time responsiveness and interactive visual-
ization capabilities. They can integrate high-precision three-dimen-
sional urban models, real-time sensor data, and climate simulation
models to construct a virtual city parallel to the physical world, though
their implementation requires significantly higher data infrastructure
investments compared to standalone predictive models. Within this
virtual environment, managers can test the impacts of different long-
term planning scenarios (such as increasing green spaces or changing
building layouts) on heat island distribution and intuitively assess their
effectiveness through visualization (Vitanova et al., 2025). This tech-
nology's application is further deepening toward real-time operational
decision-making. A typical example is the application of Smart City
Digital Twin (SCDT) systems, which not only contain static urban
models but also utilize computer vision algorithms (such as YOLOv3) to
analyze real-time pedestrian flow data and combine meteorological data
with time series forecasting models (such as SARIMA) to assess and
predict short-term collective heat exposure risks in specific areas (Pan
et al., 2024). This real-time analysis and prediction capability enables
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managers to conduct preventive interventions, issuing timely warnings
or deploying mobile cooling facilities when high heat exposure risks are
predicted, achieving a decision-making closed loop from long-term
planning to immediate response.

Al has also spawned a series of intelligent decision support tools
covering professional planning to public participation. For professional
planners, these tools provide highly specialized solutions. For example,
Kumar and Mishra (2025) constructed urban heat vulnerability indices
based on fuzzy logic and Analytic Hierarchy Process (AHP) to support
priority intervention area ranking under resource-limited conditions. In
urban infrastructure management, Al optimization methods such as
column generation algorithms are used to enhance public transportation
system service resilience under high temperatures by optimizing routes
and frequency schedules to provide safer travel options for citizens
(Huang et al., 2024). More importantly, Al applications are not limited
to the expert level but are also becoming an important bridge for pro-
moting public participation and enhancing community climate resil-
ience. One innovative practice designed interactive workshops
combining Al and LEGO blocks, where participants build LEGO cities
representing different land uses, and a simplified AI model instantly
calculates and visualizes the temperature distribution of their designed
cities (Covaci et al., 2024). This educational and entertaining approach
significantly lowers the threshold for understanding climate science and
stimulates public enthusiasm for participating in urban climate adap-
tation actions. However, the practical integration of such participatory
outputs into formal planning processes remains challenging, as sys-
tematic mechanisms for translating public inputs into actionable policy
recommendations are still lacking in most urban governance frame-
works. This trend aligns with the broader shift toward digital, interac-
tive approaches in environmental impact assessment, where emerging
platforms have shown potential to enhance public engagement, though
challenges remain in ensuring accessibility across different age groups
and digital literacy levels (Northmore and Hudson, 2022).

5. Discussion
5.1. Challenges and gaps in current research

Synthesizing across all four governance components, core bottle-
necks emerge at both data and model levels. At the data level, persistent
challenges include acquisition constraints (high sensor costs, limited
satellite revisit frequencies), quality issues (measurement uncertainties,
missing values, inconsistent calibration), and fusion difficulties (recon-
ciling different spatiotemporal resolutions and semantic definitions). At
the model level, key challenges include the accuracy-efficiency tradeoff,
interpretability limitations of black-box architectures, generalization
failures across different urban contexts, and insufficient uncertainty
quantification for risk-based decision-making. In forecasting and early
warning, Al applications face core challenges, including the balance
between prediction accuracy and computational efficiency, insufficient
multi-scale prediction capabilities, and difficulties in quantifying un-
certainties in extreme event prediction. While deep learning models
excel in complex nonlinear relationship modeling, their high computa-
tional complexity conflicts with the real-time response requirements of
urban heat warning systems. Particularly in high-resolution multi-
source data fusion scenarios, models such as LSTM and CNN often
require lengthy training times, making it difficult to support rapid
warnings for sudden heatwave events (Johannsen et al., 2024; Krish-
naraj et al., 2025; Tehrani et al., 2024). Furthermore, urban heat phe-
nomena exhibit significant scale differences from microclimate to macro
patterns, but current Al models typically only cover specific scales.
Although random forest based on NWP data can downsample spatial
resolution to the hundred-meter level, its accuracy and application at
street or building scales remain limited (Oliveira et al., 2022). This scale
limitation not only affects spatially refined warnings but also constrains
differentiated services for different user groups. Notably, existing
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research focuses primarily on improving prediction accuracy while
lacking systematic quantification of prediction uncertainties (Sun et al.,
2023; H.-C. Zhu et al., 2024a). Al models often output results with high
confidence but lack reliable uncertainty estimates, leading decision-
makers to potentially underestimate risks or create imbalanced
resource allocation during emergency responses.

Al challenges in monitoring and assessment primarily stem from
multi-source data fusion, quantification of socioeconomic dimensions,
and the dynamism and precision of assessment results. From a technical
perspective, most existing studies adopt relatively straightforward
fusion strategies, including early fusion (concatenating raw features),
late fusion (combining model outputs), and weighted averaging. How-
ever, more sophisticated methodologies, such as variational and
ensemble-based data assimilation for enforcing physical constraints,
heterogeneous graph neural networks for modeling cross-source re-
lationships, and knowledge-graph-based frameworks for semantic
alignment and ontology-driven integration, have been rarely employed
in urban heat research. This methodological gap limits the capacity to
effectively reconcile discrepancies in spatiotemporal resolution, mea-
surement uncertainty, and semantic granularity across diverse datasets,
thereby constraining the accuracy and reliability of integrated risk as-
sessments. Monitoring and assessment heavily rely on remote sensing,
ground observations, and statistical data, but these data sources are
difficult to fully match in terms of spatiotemporal resolution, accuracy,
and coverage, limiting dynamic and precise assessment of heat expo-
sure. While models based on U-Net can efficiently produce maps, their
effectiveness is constrained by the availability of high-quality imagery
(Shaamala et al., 2025; Briegel et al., 2023). When incorporating social
sensing data, such as social media, to assess public heatwave sensitivity,
attention must be paid to issues including user group representativeness
bias, data noise, and ambiguous emotional expression (Y. Cheng et al.,
2023b; Zander et al., 2023; Zhi et al., 2021). Furthermore, heat health
risks are influenced by multiple factors, including environmental
exposure, individual physiological sensitivity (such as age and under-
lying diseases), and social adaptive capacity (such as housing condi-
tions, air conditioning rates, and community support). Current Al
models have limited capability in quantifying these complex, spatially
heterogeneous socioeconomic vulnerabilities, often relying on crude
proxy variables such as census data, making it difficult to reveal fine-
grained differences at household or individual levels.

In mitigation and adaptation, core Al application challenges include
causal inference in intervention effect assessment, the practical feasi-
bility of optimization or automated solution generation, and the
complexity of multi-objective trade-offs. While Al models can identify
associations between green infrastructure and temperature reduction,
such as BRT models precisely calculating vegetation coverage thresholds
under different climatic contexts (Ren et al., 2024), establishing strict
causal relationships remains difficult, limiting the reliability of Al
technology in intervention strategy optimization. Urban morphology or
green space layout solutions generated by Al optimization algorithms
(such as genetic algorithms) (Mohamed and Zahidi, 2024) may theo-
retically achieve optimal cooling effects but face practical constraints,
including land ownership, construction costs, and conflicts with other
planning objectives. The application of generative Al in climate-
adaptive urban design is still in the exploratory stage, and the practi-
cality and controllability of generated solutions require extensive vali-
dation (Wang et al., 2025; Richards et al., 2024). It cannot be overlooked
that urban heat mitigation often requires balancing goals such as
improving transportation accessibility and ensuring housing supply, yet
most current AI models have limited capability in handling such multi-
objective, multi-constraint problems.

Al has driven innovative applications, including digital twins,
interactive platforms, and multi-scenario decision tools in urban heat
scenario simulation and decision support, but its limitations are pri-
marily reflected in future uncertainties, practical implementation of
decision support tools, and fairness in technology application. Al-based
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scenario simulations heavily depend on input future climate change
pathways (RCPs) and socioeconomic development pathways (SSPs) (Lan
et al.,, 2023), and these pathways themselves contain enormous un-
certainties that amplify with extended prediction timeframes, thereby
affecting simulation result reliability. For decision platforms such as
urban digital twins, their high construction costs, large data re-
quirements, and high maintenance demands (Pan et al., 2024; Vitanova
et al., 2025) make widespread adoption difficult in small and medium-
sized cities. Even well-designed decision support tools depend on
effective integration into existing urban governance frameworks for
actual application effectiveness. How public opinions can be systemat-
ically transformed into legally effective policy recommendations or
incorporated into official planning processes remains an open gover-
nance challenge (Covaci et al., 2024).

Comprehensively, deeper limitations lie in the current research's lack
of holistic modeling that views urban heat risk chains as multi-stage,
dynamic feedback complex systems (Brelsford et al., 2024; Westra and
Zscheischler, 2023). Most Al-enabled research focuses on single-point
optimization of specific segments or tasks, with relatively independent
components. This results in high-precision time series predictions from
warning models being difficult to directly and dynamically input and
update spatial risk assessment models, while high-risk communities
identified by assessment models often cannot automatically optimize
mitigation and adaptation strategies, hindering translation to actual risk
management. It should be emphasized that urban extreme heat phe-
nomena involve complex mechanisms coupling climate, land use, so-
cioeconomic factors, infrastructure, and health elements. Current Al
models generally have a shallow theoretical understanding of these
multi-scale, cross-domain interactions, often overlooking key cyclical
feedback within systems. Similarly, social vulnerability is not static;
during sustained heatwaves, community response capacity and re-
sources evolve dynamically, but most assessment models fail to capture
this process.

5.2. Opportunities and future research directions

Despite current challenges facing Al applications in urban extreme
heat research, the field presents new development opportunities driven
by rapid Al technological advancement, continuously enriched multi-
source data resources, and growing demands for urban climate adap-
tation and health resilience. Leveraging cutting-edge Al algorithms and
higher-quality, multidimensional data, the future holds promise for
achieving deep integration of physical environmental and social
vulnerability information, driving research paradigm shifts toward
causal inference, multi-objective optimization, and generative design,
accelerating the integration of intelligent decision support systems for
urban heat, and gradually realizing upgrades from fragmented appli-
cations to integrated systems.

First, constructing comprehensive data frameworks that integrate
physical environmental and social multidimensional information will
help AI models advance from macro thermal effect simulation toward
fine-grained risk prediction for communities and individuals. Deepening
Al integration with meteorological physical models, combined with
multi-source physical data from satellite remote sensing, ground sensor
networks, and urban Internet of Things, can significantly enhance the
spatial resolution and generalization capabilities of heat prediction
(Briegel et al., 2024; Gong et al., 2025). Feasible integration strategies
include data assimilation frameworks such as ensemble Kalman filters
that optimally combine observational data with physical model fore-
casts, hybrid sequential architectures where physical models generate
initial predictions subsequently refined by neural networks, and physics-
informed neural networks that embed energy balance equations directly
into loss functions to ensure thermodynamic consistency. Transfer
learning and meta learning are particularly critical for global equity as
these techniques enable knowledge transfer from well-studied contexts
to underrepresented regions without requiring equivalent data
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investments, systematically addressing the geographic imbalances
documented in this review. To fully realize these benefits, future
research should systematically explore and compare advanced data
fusion paradigms. For instance, 4D-Var and ensemble Kalman filter data
assimilation techniques can integrate observational data with numerical
models while preserving physical consistency. Graph-based fusion ar-
chitectures, including heterogeneous graph neural networks and spatial-
temporal graph convolutional networks, can effectively capture com-
plex dependencies across multi-modal urban data. Furthermore,
knowledge graph frameworks can provide semantic scaffolding that
enables ontology-driven integration, facilitating interoperability be-
tween datasets with different terminologies and measurement protocols.
Systematic benchmarking of these fusion approaches across diverse
urban contexts would provide valuable guidance for method selection in
practical applications. Further integration with advanced methods, such
as Bayesian deep learning to quantify uncertainties in prediction results,
will provide more reliable decision support for warning systems (Abdar
et al.,, 2021). Simultaneously, a comprehensive heat risk assessment
requires a deep understanding of human social vulnerability. With the
proliferation of social media and health monitoring devices, residents'
subjective thermal perception, emotional changes, and real-time be-
haviors have become new critical dimensions. As noted in “Atlas of the
Senseable City” (Picon and Ratti, 2023), massive urban real-time data is
depicting a new urban map reflecting social dynamics, enabling obser-
vation of previously invisible urban pulses. Therefore, future research
can utilize Al technologies such as natural language processing and
graph neural networks to combine these dynamic social sensing data
with environmental exposure data, achieving dynamic tracking and a
more refined assessment of human-environment coupled risks (Y. Cheng
et al., 2023b; Zhao et al., 2025).

Enhancing Al capabilities in formulating heat mitigation and adap-
tation strategies requires future research to urgently expand from
traditional correlation analysis to deeper causal inference, shift from
single-objective assessment to multi-objective collaborative optimiza-
tion, and efficiently explore innovative cooling design solutions through
generative Al Effective heat mitigation strategies depend not only on
understanding correlations between variables but also on revealing
underlying causal mechanisms. Integrating algorithms such as causal
inference, multi-objective optimization, and reinforcement learning
helps dynamically assess comprehensive effects of multiple intervention
measures, enhancing intelligent decision-making capabilities (Risser
et al., 2025; Li et al., 2022; Li and Cheng, 2025). In practice, attempts
can be made to deeply integrate physical process modeling, social-
environmental system dynamics, and Al methods to achieve dynamic
simulation of multiple elements, including climate, energy, health, and
social behavior. Emerging methods such as generative Al and evolu-
tionary algorithms also provide efficient design pathways for collabo-
rative optimization of urban morphology and adaptive infrastructure
(Makki et al., 2019; Wang et al., 2025). These technologies can auto-
matically explore innovative design combinations, improving urban
cooling effects and spatial utilization efficiency through intelligent
iteration. However, practical application of these innovative methods
still requires addressing real-world constraints, cost-benefit consider-
ations, and multi-objective conflicts to enhance solution feasibility.

Advancement of intelligent decision support systems and digital twin
technologies provides important platforms for Al-enabled heat gover-
nance while offering opportunities to break through current research
bottlenecks of fragmented segments lacking systematic coordination.
This aligns closely with core viewpoints in “Introduction to Urban Sci-
ence” (Bettencourt, 2021), which views cities as information processing
systems forming complex feedback loops between people, physical en-
vironments, and infrastructure. Based on this perspective, the future key
lies in constructing systematic Al frameworks capable of connecting
multi-stage risk management processes with dynamic feedback mecha-
nisms. Through integration of multi-source real-time data, intelligent
scenario simulation engines, and interactive visualization tools, organic
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coordination of forecasting and warning, monitoring and assessment,
mitigation and adaptation, and decision support can be achieved, ulti-
mately forming complete closed loops from risk identification to intel-
ligent response (Batty, 2018; Pan et al., 2024). In practical applications,
high-precision heatwave warnings can automatically trigger real-time
vulnerability assessments for specific communities and dynamically
optimize cooling center operations and mobile cooling facility deploy-
ment accordingly, achieving effective integration of risk perception and
intelligent response. At the technical implementation level, promoting
data standardization and model component modularization is necessary
to facilitate open sharing of tool chains, establishing technical founda-
tions for multi-departmental collaboration and cross-sectoral gover-
nance (Goodchild and Li, 2021; Ye et al., 2025b). Similar calls for
methodological standardization and improved study design have been
emphasized in environmental monitoring contexts, where inconsistent
protocols hinder cross-study comparability and limit the broader utility
of collected data (Martins et al., 2023). Decision-makers should also
actively explore new models of participatory planning and public
empowerment, promoting bottom-up risk consensus building and
collaborative governance to enhance social resilience (Evans et al.,
2016). Realizing the full potential of these advanced paradigms requires
coordinated investment in open data sharing, benchmark dataset
development spanning diverse urban contexts, and reproducible model
implementations that facilitate systematic comparison of methods
across different cities and climatic conditions. Sustainability issues,
including ethical responsibility, privacy protection, and carbon foot-
prints in Al governance, should also receive high attention, collectively
promoting the construction of inclusive, equitable, and green intelligent
heat governance systems (Vinuesa et al., 2020).

5.3. Limitations of this review

This review has certain limitations, and future research can be
further improved and expanded in terms of diversifying literature types,
in-depth analysis of model mechanisms, and Al ethical and moral
assessment. First, the literature search and screening process mainly
relied on English databases and mainstream international journals,
which may have missed some unpublished works, regional journals, or
non-English literature, resulting in certain language and regional biases
in research coverage. Additionally, due to the high heterogeneity among
different studies in terms of model methods, data types, spatial scales,
and evaluation metrics, this paper faces difficulties in conducting in-
depth comparisons and quantitative assessments of all technical de-
tails and specific cases during the synthesis and summarization process.
Finally, although the focus of this paper is not to deeply explore the
ethical risks and data privacy protection of Al models, social governance
issues such as fairness and sustainability should still receive more
attention.

6. Conclusions

This study conducted a comprehensive analysis of the application of
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artificial intelligence (AI) in urban extreme heat research through a
systematic literature review methodology. Following the PRISMA
guidelines, we conducted searches in the Scopus database and ulti-
mately included 102 high-quality publications. Based on systematic
analysis, we constructed a comprehensive framework for Al-enabled
urban extreme heat governance, categorizing applications into four
components: prediction and early warning, monitoring and assessment,
mitigation and adaptation, and scenario simulation and decision sup-
port. We documented the basic information, data characteristics, tech-
nical methods, and application scenarios of the research.

The results indicate that AI technologies demonstrate significant
advantages across all components. In prediction and early warning,
models such as Random Forest and XGBoost are suitable for short-term
forecasting due to their efficiency and interpretability, while CNN and
LSTM show greater advantages in complex spatiotemporal features and
high-resolution prediction. Hybrid modeling further enhances accuracy
and generalizability. In monitoring and assessment, Al has overcome the
spatiotemporal limitations of traditional remote sensing, achieving a
transition from static characterization to dynamic heat-population risk
identification, and capturing residents' subjective perceptions through
social media data. In mitigation and adaptation, Al identifies optimal
thresholds for green-blue infrastructure, promotes urban morphological
factor regulation, and generative Al also provides new pathways for
adaptive design. In scenario simulation and decision support, digital
twins and interactive platforms cover strategic planning and operations,
promoting the integration of professional and public engagement.
However, applications still face challenges, including the balance be-
tween accuracy and efficiency, multi-source data fusion, insufficient
causal inference, implementation barriers, and a lack of comprehensive
system modeling capabilities.

Future research should focus on constructing a more comprehensive,
intelligent, and sustainable Al-driven urban heat governance system.
The primary task is to establish a comprehensive data framework that
integrates physical environmental and multi-dimensional social infor-
mation. Through deepening the integration of Al with meteorological
physical models and introducing uncertainty quantification, we can
achieve a transition from macroscopic thermal effect simulation to fine-
grained risk prediction. At the technical level, we need to promote a
paradigm shift toward causal inference, multi-objective optimization,
and generative design, exploring innovative cooling design solutions.
More critically, we must construct a systematic Al framework that links
multi-stage risk management processes, forming a complete closed loop
from risk identification to intelligent response. This development di-
rection is highly aligned with the United Nations Sustainable Develop-
ment Goals of Good Health and Well-being (SDG 3), Sustainable Cities
and Communities (SDG 11), and Climate Action (SDG 13).
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Fig. A3. Code availability.
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